(2004•奉賢區(qū)二模)如圖,已知在邊長為1的正方形ABCD中,以D為圓心、DA為半徑畫弧,E是AB上的一動點,過E作的切線交BC于點F,切點為G,連GC,過G作GC的垂線交AD與N,交CD的延長線于M.
(1)求證:AE=EG,GF=FC;
(2)設(shè)AE=x,用含x的代數(shù)式表示FC的長;
(3)在圖中,除GF以外,是否還存在與FC相等的線段,是哪些?試證明或說明理由;
(4)當△GDN是等腰三角形時,求AE的長.

【答案】分析:(1)根據(jù)切線長定理即可得出AE=EG,GF=FC.
(2)根據(jù)(1)的結(jié)果,那么EF=AE+FC,我們用AE表示出BE,用CF表示出BF,那么可用勾股定理在三角形EBF中求出AE和CF的關(guān)系.
(3)應該是ND,可通過構(gòu)建全等三角形來求解,連接DF,關(guān)鍵是證三角形MND和DFC全等.根據(jù)切線長定理和垂徑定理,那么DF⊥CG,由于BC是切線,因此∠FCG=∠GMC,根據(jù)同角的余角相等可得出∠FDC=∠FCG=∠GMC,又有一組直角,DM=DC(都是半徑)由此可得出兩三角形全等,那么ND=FC.
(4)如果GDN是等腰三角形,那么只有一種情況GN=ND,此時三角形GND和CGF全等,此時DG=GC=DC,因此可得出三角形DGC是等邊三角形,(2)中得出了用x表示CF的式子,那么可在直角三角形MDN中根據(jù)特殊角30°和MD即正方形的邊長來得出DN的值,然后求出x即可得出AE的長.
解答:解:(1)由于EA、EF、FC都是圓D的切線,且A、G、C是切點,
因此根據(jù)切線長定理,可得出AE=EG,GF=FC;

(2)設(shè)FC=t,BE=1-x,BF=1-t,EF=x+t,
在直角三角形BEF中,(1-x)2+(1-t)2=(x+t)2,
解出t=,
∴FC=;

(3)存在,ND=FC,GF是⊙D的切線,
∴∠DGF=90°,
連DF,那么DF平分弧GC,且DF⊥CG,
∵∠FCG=90°-∠GCD,∠GMC=90°-∠GCD,
∴∠FCG=∠GMC,
∵∠MDN=∠DCF=90°,MD=DC,
∴△MDN≌△DCF,
∴DN=FC;

(4)當△GDN是等腰三角形時,只能有GN=ND,
∴△GDN≌△GFC,
∴GD=DC=CG,∠DGC=60°,ND=MDtan30°=,
∴x=2-
點評:本題主要考查了切線長定理、垂徑定理,正方形的性質(zhì)和全等三角形的判定等知識點.根據(jù)切線的性質(zhì)得出角的度數(shù)或邊相等是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2004年上海市奉賢區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2004•奉賢區(qū)二模)已知拋物線y=ax2+bx+c與y軸交于C(0,c)點,與x軸交于B(c,0),其中c>0,
(1)求證:b+1+ac=0;
(2)若C與B兩點距離等于,求c;
(3)在(2)的條件下,一元二次方程ax2+bx+c=0的兩根之差的絕對值等于1,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年上海市奉賢區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2004•奉賢區(qū)二模)如圖:是一拋物線型鋼結(jié)構(gòu),鋼結(jié)構(gòu)CD的跨度為20米,拱高CC’=2米.假定用吊車從地面吊起,吊鉤位于拋物線頂點O的正上方12.5米點F處,吊繩分別掛在距離地面1.75米的A、B兩處,求吊繩的FA、FB的總長.(計算過程中可能用到以下參考數(shù)據(jù):4.32=18.49,4.72=22.09,5.32=28.09,5.72=32.49)

查看答案和解析>>

科目:初中數(shù)學 來源:2004年上海市奉賢區(qū)中考數(shù)學二模試卷(解析版) 題型:填空題

(2004•奉賢區(qū)二模)正比例函數(shù)的圖象與直線y=-x+4平行,該正比例函數(shù)y隨x的增大而   

查看答案和解析>>

科目:初中數(shù)學 來源:2004年上海市奉賢區(qū)中考數(shù)學二模試卷(解析版) 題型:填空題

(2004•奉賢區(qū)二模)函數(shù),f(t)=1,則t=   

查看答案和解析>>

科目:初中數(shù)學 來源:2004年上海市奉賢區(qū)中考數(shù)學二模試卷(解析版) 題型:選擇題

(2004•奉賢區(qū)二模)下列命題正確的有( )
A.在同圓或等圓中,等弦所對的弧相等
B.圓的兩條不是直徑的相交弦,不能互相平分
C.正多邊形的中心是它的對稱中心
D.各邊相等的圓外切多邊形是正多邊形

查看答案和解析>>

同步練習冊答案