【題目】如圖,在Rt△ABC中,BAC 90o,D是BC的中點,E是AD的中點,過點A作AF//BC 交 BE的延長線于點F,連接CF.
(1)求證:AD=AF.
(2)當(dāng)AB=AC=時,求四邊形ADCF 的面積.
【答案】(1)證明見解析(2)16
【解析】分析:(1)E是AD的中點,AF∥BC,,易證得△AEF≌△DEB,即可得AF=BD,又由在△ABC中,∠BAC=90°,AD是中線,根據(jù)直角三角形斜邊的中線等于斜邊的一半,即可證得 即可證得:;
證明四邊形ADCF為正方形,根據(jù)正方形的面積公式進(jìn)行計算即可.
詳解:(1)證明:∵AF∥BC,
∴∠EAF=∠EDB,
∵E是AD的中點,
∴AE=DE,
在△AEF和△DEB中,
∴△AEF≌△DEB(ASA),
∴AF=BD,
∵在△ABC中,,AD是中線,
∴
∴AD=AF;
(2)∵
∴
∵AF//BC,
∴四邊形ADCF為平行四邊形
∵,
∴平行四邊形ADCF為菱形,
∵,
D是BC的中點,
∴四邊形ADCF為正方形
∵ AB=AC=,
∴ BC=8,
∴ CD=4,
∴正方形ADCF的面積為16
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一次函數(shù)y=-2x+4,下列結(jié)論錯誤的是( )
A. 函數(shù)的圖象與x軸的交點坐標(biāo)是
B. 函數(shù)值隨自變量的增大而減小
C. 函數(shù)的圖象不經(jīng)過第三象限
D. 函數(shù)的圖象向下平移4個單位長度得的圖象
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD中,∠BAD=∠BDC=90°,BD2=ADBC.
(1)求證:AD∥BC;
(2)過點A作AE∥CD交BC于點E.請完善圖形并求證:CD2=BEBC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機小李某天上午營運時是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>)如下:
,,,,,,
問:(1)將最后一位乘客送到目的地時,小李在什么位置?
(2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?
(3)若出租車起步價為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料閱讀;
小明偶然發(fā)現(xiàn)線段AB的端點A的坐標(biāo)為(1,2),端點B的坐標(biāo)為(3,4),則線段AB中點的坐標(biāo)為(2,3),通過進(jìn)一步的探究發(fā)現(xiàn)在平面直角坐標(biāo)系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標(biāo)為(,).
知識運用:
如圖,矩形ONEF的對角線相交于點M,ON、OF分別在x軸和y軸上,O為坐標(biāo)原點,點E的坐標(biāo)為(4,3),則點M的坐標(biāo)為 .
能力拓展:
在直角坐標(biāo)系中,有A(﹣1,2)、B(3,4)、C(l,4)三點,另有一點D與點A、B、C構(gòu)成平行四邊形的頂點,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖像交于A(1,12)和B(6,2)兩點。點P是線段AB上一動點(不與點A和B重合),過P點分別作x、y軸的垂線PC、PD交反比例函數(shù)圖像于點M、N,則四邊形PMON面積的最大值是( )
A. B. C. 6 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接2018年中考,我校對九年級學(xué)生進(jìn)行了一次數(shù)學(xué)模擬考試,并隨機抽取了部分學(xué)生的測試成績作為樣本進(jìn)行分析,繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中提供的信息解答下列問題:
(1)在這次調(diào)查中,一共抽取了多少名學(xué)生?
(2)求樣本中表示成績類別為“中”的人數(shù),并將條形統(tǒng)計圖補充完整;
(3)我校九年級共有700人參加了這次數(shù)學(xué)考試,請估計我校九年級共有多少名學(xué)生的數(shù)學(xué)成績可以達(dá)到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形OABC在如圖所示平面直角坐標(biāo)系中,點B的坐標(biāo)為(4,3),連接AC.動點P從點B出發(fā),以2cm/s的速度,沿直線BC方向運動,運動到C為止(不包括端點B、C),過點P作PQ∥AC交線段BA于點Q,以PQ為邊向下作正方形PQMN,設(shè)正方形PQMN與△ABC重疊部分圖形面積為S(cm2),設(shè)點P的運動時間為t(s).
(1)請用含t的代數(shù)式表示BQ長和N點的坐標(biāo);
(2)求S與t之間的函數(shù)關(guān)系式,并指出t的取值范圍;
(3)如圖2,點G在邊OC上,且OG=1cm,在點P從點B出發(fā)的同時,另有一動點E從點O出發(fā),以2cm/s的速度,沿x軸正方向運動,以O(shè)G、OE為一組鄰邊作矩形OEFG.試求當(dāng)點F落在正方形PQMN的內(nèi)部(不含邊界)時t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面上有點A、點O和直線PQ,其中網(wǎng)格正方形的邊長為1個單位,在網(wǎng)格中完成下列畫圖.(不必寫出畫法,保留畫圖痕跡,并寫出結(jié)論)
(1)將點A向右平移3個單位可到達(dá)點B,再向上平移2個單位可到達(dá)點C,標(biāo)出點B、點C,并聯(lián)結(jié)AB、BC和AC,畫出三角形ABC;
(2)畫出三角形ABC關(guān)于直線PQ的軸對稱的圖形;
(3)畫出三角形ABC關(guān)于點O的中心對稱的圖形.
結(jié)論:
(1) ;
(2)三角形 是三角形ABC關(guān)于直線PQ的軸對稱的圖形;
(3)三角形 是三角形ABC關(guān)于點O的中心對稱的圖形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com