如圖,a、b、c分別表示△ABC的三邊長,下面三角形中與△ABC一定全等的是


  1. A.
  2. B.
  3. C.
  4. D.
C
分析:利用全等三角形的判定方法,觀察已知三角形與選項中的三角形的邊角是否滿足SSS或SAS或ASA或AAS即可判斷.
解答:A、已知的三角形中的兩邊是兩邊及兩邊的夾角,而選項中是兩邊及一邊的對角,故兩個三角形不全等,故選項錯誤;
B、已知圖形中b是50°角的對邊,而選項中是鄰邊,故兩個三角形不全等,故選項錯誤;
C、已知圖形中,∠C=180°-∠A-∠B=58°,則依據SAS即可證得兩個三角形全等,故選項正確;
D、已知圖形中72°角與50°角的夾邊是c,而選項中是a,故兩個三角形不全等,故選項錯誤.
故選C.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,在正方形ABCD中,點E、F分別為邊BC、CD的中點,AF、DE相交于點G,則可得結論:①AF=DE,②AF⊥DE(不須證明).
(1)如圖②,若點E、F不是正方形ABCD的邊BC、CD的中點,但滿足CE=DF,則上面的結論①、②是否仍然成立;(請直接回答“成立”或“不成立”)
(2)如圖③,若點E、F分別在正方形ABCD的邊CB的延長線和DC的延長線上,且CE=DF,此時上面的結論①、②是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由.
(3)如圖④,在(2)的基礎上,連接AE和EF,若點M、N、P、Q分別為AE、EF、FD、AD的中點,請先判斷四邊形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一種,并寫出證明過程.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網某花木場有一塊形如等腰梯形ABCD的空地(如圖),各邊中點分別為E、F、G、H,測得對角線AC=5m,若用籬笆圍成四邊形EFGH的場地,則需籬笆總長度為
 
m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖中所有的線段可分別表示為
線段AB,BC,AC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,經過原點O的⊙C分別與x軸、y軸交于點A、B,P為
OBA
上一點.若∠OPA=60°,OA=4
3
,則OB的長為
4
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點G,點G在點A,
E之間,連接CE、CF、EF,有下列四個結論:
①△CDF≌△EBC;     ②∠CDF=∠EAF;
③△ECF是等邊三角形;  ④CG⊥AE,
請把你認為正確的結論的序號填在橫線上
①②③
①②③

查看答案和解析>>

同步練習冊答案