【題目】在△ABC中,AD是∠BAC的平分線,E、F分別為AB、AC上的點,且∠EDF+∠EAF=180°,求證DE=DF.
【答案】證明見解析.
【解析】
過D作DM⊥AB,于M,DN⊥AC于N,根據(jù)角平分線性質(zhì)求出DN=DM,繼而可推導(dǎo)得出∠MED=∠NFD,根據(jù)全等三角形的判定AAS推出△EMD≌△FND即可.
過D作DM⊥AB于M,DN⊥AC于N,
即∠EMD=∠FND=90°,
∵AD平分∠BAC,DM⊥AB,DN⊥AC,
∴DM=DN(角平分線性質(zhì)),
∵∠EAF+∠EDF=180°,
∴∠MED+∠AFD=360°-180°=180°,
∵∠AFD+∠NFD=180°,
∴∠MED=∠NFD,
在△EMD和△FND中
,
∴△EMD≌△FND(AAS),
∴DE=DF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知長方形ABCD中AB=8cm,BC=10cm,在邊CD上取一點E,將△ADE折疊使點D恰好落在BC邊上的點F,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=a外有一點P,畫點P關(guān)于直線OA的對稱點P′,再作點P′關(guān)于直線OB的對稱點P″.
(1)試猜想∠POP″與a的大小關(guān)系,并說出你的理由.
(2)當(dāng)P為∠AOB 內(nèi)一點或∠AOB邊上一點時,上述結(jié)論是否成立?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費.乙公司表示:按每千克16元收費,另加包裝費3元.設(shè)小明快遞物品x千克.
(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E為BC邊的中點,連接DE.
(1)求證:DE與⊙O相切.
(2)若tanC= ,DE=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的3個頂點都在5×5的網(wǎng)格(每個小正方形的邊長均為1個單位長度)的格點上,將△ABC繞點B順時針旋轉(zhuǎn)到△A′BC′的位置,且點A′、C′仍落在格點上,則線段AB掃過的圖形面積是平方單位(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿DE、EF翻折,頂點A,B均落在點O處,且EA與EB重合于線段EO,若∠CDO+∠CFO=100°,則∠C的度數(shù)為( 。
A. 40° B. 41° C. 42° D. 43°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下是某省2010年教育發(fā)展情況有關(guān)數(shù)據(jù):
全省共有各級各類學(xué)校25000所,其中小學(xué)12500所,初中2000所,高中450所,其它學(xué)校10050所;全省共有在校學(xué)生995萬人,其中小學(xué)440萬人,初中200萬人,高中75萬人,其它280萬人;全省共有在職教師48萬人,其中小學(xué)20萬人,初中12萬人,高中5萬人,其它11萬人.
請將上述資料中的數(shù)據(jù)按下列步驟進(jìn)行統(tǒng)計分析.
(1)整理數(shù)據(jù):請設(shè)計一個統(tǒng)計表,將以上數(shù)據(jù)填入表格中.
(2)描述數(shù)據(jù):下圖是描述全省各級各類學(xué)校所數(shù)的扇形統(tǒng)計圖,請將它補(bǔ)充完整.
(3)分析數(shù)據(jù):
①分析統(tǒng)計表中的相關(guān)數(shù)據(jù),小學(xué)、初中、高中三個學(xué)段的師生比,最小的是哪個學(xué)段?請直接寫出.(師生比=在職教師數(shù)︰在校學(xué)生數(shù))
②根據(jù)統(tǒng)計表中的相關(guān)數(shù)據(jù),你還能從其它角度分析得出什么結(jié)論嗎?(寫出一個即可)
③從扇形統(tǒng)計圖中,你得出什么結(jié)論?(寫出一個即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com