已知點(diǎn)A,B,經(jīng)過點(diǎn)A,B作半徑為3cm的圓,能作

[  ]

A.1個(gè)圓
B.2個(gè)圓
C.無數(shù)個(gè)圓
D.不能確定能否作圓

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(0,1),B(-4,4),將點(diǎn)B繞點(diǎn)A順時(shí)針方向90°得到點(diǎn)C;頂點(diǎn)在坐標(biāo)原點(diǎn)的拋物線經(jīng)過點(diǎn)B.
(1)求拋物線的解析式和點(diǎn)C的坐標(biāo);
(2)拋物線上一動(dòng)點(diǎn)P,設(shè)點(diǎn)P到x軸的距離為d1,點(diǎn)P到點(diǎn)A的距離為d2,試說明d2=d1+1;
(3)在(2)的條件下,請?zhí)骄慨?dāng)點(diǎn)P位于何處時(shí),△PAC的周長有最小值,并求出△PA精英家教網(wǎng)C的周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-2,-4),OB=2,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、O、B三點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)M是拋物線對稱軸上一點(diǎn),試求AM+OM的最小值;
(3)在此拋物線上,是否存在點(diǎn)P,使得以點(diǎn)P與點(diǎn)O、A、B為頂點(diǎn)的四邊形是梯形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鹽城模擬)如圖1,已知點(diǎn)A(a,0),B(0,b),且a、b滿足
a+1
+(a+b+3)2=0
,?ABCD的邊AD與y軸交于點(diǎn)E,且E為AD中點(diǎn),雙曲線y=
k
x
經(jīng)過C、D兩點(diǎn).
(1)求k的值;
(2)點(diǎn)P在雙曲線y=
k
x
上,點(diǎn)Q在y軸上,若以點(diǎn)A、B、P、Q為頂點(diǎn)的四邊形是平行四邊形,試求滿足要求的所有點(diǎn)P、Q的坐標(biāo);
(3)以線段AB為對角線作正方形AFBH(如圖3),點(diǎn)T是邊AF上一動(dòng)點(diǎn),M是HT的中點(diǎn),MN⊥HT,交AB于N,當(dāng)T在AF上運(yùn)動(dòng)時(shí),
MN
HT
的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請求出其值,并給出你的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y=
k
x
的圖象經(jīng)過第二象限內(nèi)的點(diǎn)A(-1,m),AB⊥x軸于點(diǎn)B,△AOB的面積為2.若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函數(shù)y=
k
x
的圖象上另一點(diǎn)C(n,一2).
(1)求直線y=ax+b的解析式;
(2)設(shè)直線y=ax+b與x軸交于點(diǎn)M,求AM的長;
(3)在雙曲線上是否存在點(diǎn)P,使得△MBP的面積為8?若存在請求P點(diǎn)坐標(biāo);若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(0,1),B(-4,4),將點(diǎn)B繞點(diǎn)A順時(shí)針方向90°得到點(diǎn)C;頂點(diǎn)在坐標(biāo)原點(diǎn)的拋物線經(jīng)過點(diǎn)B.
(1)求拋物線的解析式和點(diǎn)C的坐標(biāo);
(2)拋物線上一動(dòng)點(diǎn)P,設(shè)點(diǎn)P到x軸的距離為d1,點(diǎn)P到點(diǎn)A的距離為d2,試說明d2=d1+1;
(3)在(2)的條件下,請?zhí)骄慨?dāng)點(diǎn)P位于何處時(shí),△PAC的周長有最小值,并求出△PAC的周長的最小值.

查看答案和解析>>

同步練習(xí)冊答案