【題目】如圖,點E是正方形ABCD的邊DC上一點,把△ADE順時針旋轉(zhuǎn)△ABF的位置.

(1)旋轉(zhuǎn)中心是點 , 旋轉(zhuǎn)角度是度;
(2)若連結(jié)EF,則△AEF是三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長.

【答案】
(1)A;90
(2)等腰直角
(3)

解:由題意得:△ADE≌△ABF,

∴S四邊形AECF=S正方形ABCD=25,

∴AD=5,而∠D=90°,DE=2,


【解析】 解:(1)如圖,由題意得:旋轉(zhuǎn)中心是點A,旋轉(zhuǎn)角度是90度.故答案為A、90.(2)由題意得:AF=AE,∠EAF=90°,∴△AEF為等腰直角三角形.故答案為等腰直角.
(1)根據(jù)旋轉(zhuǎn)變換的定義,即可解決問題.(2)根據(jù)旋轉(zhuǎn)變換的定義,即可解決問題.(3)根據(jù)旋轉(zhuǎn)變換的定義得到△ADE≌△ABF,進而得到S四邊形AECF=S正方形ABCD=25,求出AD的長度,即可解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線MN交⊙O于A,B兩點,AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.

(1)求證:DE是⊙O的切線;
(2)若DE=6,AE= ,求⊙O的半徑;
(3)在第(2)小題的條件下,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(a,b),B(c,0),|a-3|+(2b-c)2+=0.

(1)求點A,B的坐標(biāo);

(2)如圖,點Cx軸正半軸上一點,且OC=OA,點DOC的中點,連AC,AD,請?zhí)剿?/span>AD+CDAC之間的大小關(guān)系,并說明理由;

(3)如圖,過點AAE⊥y軸于E,F(xiàn)x軸負半軸上一動點不與(-3,0)重合 ),GEF延長線上,以EG為一邊作∠GEN=45°,過AAM⊥x軸,交EN于點M,連FM,當(dāng)點Fx軸負半軸上移動時,式子的值是否發(fā)生變化?若變化,求出變化的范圍;若不變化,請求出其值并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與△ABC相似,則點E的坐標(biāo)不可能是(

A.(6,0)
B.(6,3)
C.(6,5)
D.(4,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:

(1)用直尺和圓規(guī)作圖(不寫作法,保留作圖痕跡)在圖1中,作△ABC的角平分線BD; 在圖2中,作△ABC的高AE;

(2)在圖3中,畫出下列圖形關(guān)于直線a的對稱圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知長方體的長為1cm、寬為1cm、高為4cm(其中AC=1cm,BC=1cm,CG=4cm).一只螞蟻如果沿長方體的表面從A點爬到F點,最短的路程是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的解析式為y=ax2+bx+c,則下列說法中錯誤的是( )
A.a確定拋物線的形狀與開口方向
B.若將拋物線C沿y軸平移,則a,b的值不變
C.若將拋物線C沿x軸平移,則a的值不變
D.若將拋物線C沿直線l:y=x+2平移,則a、b、c的值全變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AED的位置,若AE⊥BC,∠ADC=65°,則∠ABC的度數(shù)為( )

A.30°
B.40°
C.50°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中小方格邊長為1請你根據(jù)所學(xué)的知識解決下面問題

1)求網(wǎng)格圖中ABC的面積

2)判斷ABC是什么形狀?并所明理由

查看答案和解析>>

同步練習(xí)冊答案