分析:(1)由題意知AD⊥x軸于點(diǎn)D,點(diǎn)C是AD的中點(diǎn),所以C(2,2);
(2)假設(shè)存在點(diǎn)P使△QOM與△ABD相似,則由已知條件和相似三角形的性質(zhì)得知
=或
=,繼而求得使條件成立的M點(diǎn)坐標(biāo)可能是:(0,3)或者(0,-3),(0,12)或者(0,-12);不同的坐標(biāo)對(duì)應(yīng)直線PQ不同的解析式;然后解由直線QP與直線BC的解析式組成的方程組,求得點(diǎn)M的坐標(biāo);
(3)以P為圓心、2為半徑作圓,過Q作此圓的兩條切線,切點(diǎn)分別是E、F,連接PE、PF(圖2);根據(jù)切線的性質(zhì)來證明△PEQ≌△PFQ,S
四邊形QEPF=2QE,當(dāng)點(diǎn)P在直線BC上移動(dòng)時(shí),QE的大小由PQ的大小確定,PQ最小時(shí),QE達(dá)到最小,從而使四邊形QEPF的面積最。@然,在所有點(diǎn)Q到直線BC的距離中,當(dāng)QP⊥BC時(shí)QP的長(zhǎng)是最小的,所以此時(shí)四邊形QEPF的面積即為最小面積.
解答:解:(1)∵△AOB是等腰三角形,頂點(diǎn)A的坐標(biāo)是(2,4),
又∵AD⊥x軸于點(diǎn)D,點(diǎn)C是AD的中點(diǎn),
∴C(2,2);(2分)
(2)∵△QOM與△ABD相似,而∠QOM=∠ADB=90°,
∴必有
=或
=,(圖1)(1分)
又∵AD=4,BD=2,OQ=6,
∴OM=3或者12,
∴使條件成立的M點(diǎn)坐標(biāo)可能是:
(0,3)或者(0,-3),(0,12)或者(0,-12),(1分)
又∵Q(-6,0),
∴①當(dāng)M(0,3)時(shí),直線QP的解析式是:
y=x+3;
②當(dāng)M(0,-3)時(shí),直線QP的解析式是:
y=-x-3;
③當(dāng)M(0,12)時(shí),直線QP的解析式是:y=2x+12;
④當(dāng)M(0,-12)時(shí),直線QP的解析式是:y=-2x-12;(2分)
∵B(4,0),C(2,2),
∴直線BC的解析式是:y=-x+4;(1分)
分別解由直線QP與直線BC的解析式組成的方程組:
①
,②
,③
,④
得:①
,②
,③
,④
使△QOM與△BCD相似的點(diǎn)P的坐標(biāo)是
(,),(14,-10),
(-,)或者(-16,20).(2分)
說明:以上解題過程中,每少一種情況扣(1分),格式不對(duì)或解題不完整酌情扣分.
(3)以P為圓心、
為半徑作圓,過Q作此圓的兩條切線,切點(diǎn)分別是E、F,連接PE、PF(圖2).
則PE=PF=
,PQ=PQ,∠PEQ=∠PFQ=90°,
∴△PEQ≌△PFQ;(1分)
∴
S四邊形QEPF=2×S△QEP=2××PE×QE=2QE.(1分)
∵QE
2=PQ
2-PE
2=PQ
2-2,
當(dāng)點(diǎn)P在直線BC上移動(dòng)時(shí),QE的大小由PQ的大小確定,PQ最小時(shí),QE達(dá)到最小,從而使四邊形QEPF的面積最。@然,在所有點(diǎn)Q到直線BC的距離中,當(dāng)QP⊥BC時(shí)QP的長(zhǎng)是最小的,
∴此時(shí)四邊形QEPF的面積即為最小面積.
(1分)
當(dāng)QP⊥BC于P時(shí),∠QPB=∠BDC=90°,∠PBQ=∠DBC,
故△PBQ∽△DBC,
∴
=,而CD=2,BD=2,
∴BC=
2,
∴
=∴PQ=
5,(1分)
∴
QE====4,
∴四邊形QEPF的最小面積=
QE=4.(1分)
說明:解法不同參考給分,格式不對(duì)或解題不完整酌情扣分.