【題目】在菱形中,.
(1)如圖1,點(diǎn)為線段的中點(diǎn),連接,.若,求線段的長(zhǎng).
(2)如圖2,為線段上一點(diǎn)(不與,重合),以為邊向上構(gòu)造等邊三角形,線段與交于點(diǎn),連接,,為線段的中點(diǎn).連接,判斷與的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)在(2)的條件下,若,請(qǐng)你直接寫出的最小值.
【答案】(1)EC=;(2)DM=2DQ;(3)DM+CN的最小值為2.
【解析】
(1)如圖1,連接對(duì)角線BD,先證明△ABD是等邊三角形,根據(jù)E是AB的中點(diǎn),由等腰三角形三線合一得:DE⊥AB,利用勾股定理依次求DE和EC的長(zhǎng);
(2)如圖2,作輔助線,構(gòu)建全等三角形,先證明△ADH是等邊三角形,再由△AMN是等邊三角形,得條件證明△ANH≌△AMD(SAS),則HN=DM,根據(jù)DQ是△CHN的中位線,得HN=2DQ,由等量代換可得結(jié)論.
(3)先判斷出點(diǎn)N在CD的延長(zhǎng)線上時(shí),CN+DM最小,最小為CH,再判斷出∠ACD=30°,即可用三角函數(shù)求出結(jié)論.
解:(1)如圖1,
連接BD,則BD平分∠ABC,
∵四邊形ABCD是菱形,
∴AD∥BC,
∴∠A+∠ABC=180°,
∵∠A=60°,
∴∠ABC=120°,
∴∠ABD=∠ABC=60°,
∴△ABD是等邊三角形,
∴BD=AD=4,
∵E是AB的中點(diǎn),
∴DE⊥AB,
由勾股定理得:DE=,
∵DC∥AB,
∴∠EDC=∠DEA=90°,
在Rt△DEC中,DC=4,
EC=;
(2)如圖2,
延長(zhǎng)CD至H,使DH=CD,連接NH、AH,
∵AD=CD,
∴AD=DH,
∵CD∥AB,
∴∠HDA=∠BAD=60°,
∴△ADH是等邊三角形,
∴AH=AD,∠HAD=60°,
∵△AMN是等邊三角形,
∴AM=AN,∠NAM=60°,
∴∠HAN+∠NAG=∠NAG+∠DAM,
∴∠HAN=∠DAM,
在△ANH和△AMD中,
∴△ANH≌△AMD(SAS),
∴HN=DM,
∵D是CH的中點(diǎn),Q是NC的中點(diǎn),
∴DQ是△CHN的中位線,
∴HN=2DQ,
∴DM=2DQ.
(3)如圖2,由(2)知,HN=DM,
∴要CN+DM最小,便是CN+HN最小,
即:點(diǎn)C,H,N在同一條線上時(shí),CN+DM最小,
此時(shí),點(diǎn)D和點(diǎn)Q重合,
即:CN+DM的最小值為CH,
如圖3,
由(2)知,△ADH是等邊三角形,
∴∠H=60°.
∵AC是菱形ABCD的對(duì)角線,
∴∠ACD=∠BCD=∠BAD=30°,
∴∠CAH=180°-30°-60°=90°,
在Rt△
∴DM+CN的最小值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為2,點(diǎn)P是⊙O內(nèi)一點(diǎn),且OP= ,過P作互相垂直的兩條弦AC、BD,則四邊形ABCD面積的最大值為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形A′B′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°),若∠1=110°,則∠α= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=40°,將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)100°.得到△ADE,連接BD,CE交于點(diǎn)F.
(1)求證:△ABD≌△ACE;
(2)求證:四邊形ABFE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
①畫出△ABC向左平移5個(gè)單位長(zhǎng)度后得到的△A1B1C1;
②請(qǐng)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△A2B2C2 , 并寫出點(diǎn)A2、B2、C2坐標(biāo);
③請(qǐng)畫出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后△A3B3C3 , 并寫出點(diǎn)A3、B3、C3坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某新建小區(qū)要在一塊等邊三角形內(nèi)修建一個(gè)圓形花壇.
(1)要使花壇面積最大,請(qǐng)你用尺規(guī)畫出圓形花壇示意圖;(保留作圖痕跡,不寫做法)
(2)若這個(gè)等邊三角形的周長(zhǎng)為36米,請(qǐng)計(jì)算出花壇的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個(gè)以點(diǎn)O為圓心的同心圓,
圖1 圖2
(1)如圖1,大圓的弦AB交小圓于C,D兩點(diǎn),試判斷AC與BD的數(shù)量關(guān)系,并說明理由.
(2)如圖2,將大圓的弦AB向下平移使其為小圓的切線,切點(diǎn)為C,證明:AC=BC.
(3)在(2)的基礎(chǔ)上,已知AB=20cm,直接寫出圓環(huán)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知 的三邊長(zhǎng)為a,b,c,且滿足方程a2x2-(c2-a2-b2)x+b2=0,則方程根的情況是( )。
A.有兩相等實(shí)根
B.有兩相異實(shí)根
C.無實(shí)根
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 為 的直角邊 上一點(diǎn),以 為半徑的 與斜邊 相切于點(diǎn) ,交 于點(diǎn) .已知 , .
(1)求 的長(zhǎng);
(2)求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com