【題目】如圖,在平行四邊形ABCD中,DBDA,ADB的平分線交AB于點(diǎn)F,交CB的延長(zhǎng)線于點(diǎn)E,連接AE.

(1)求證:四邊形AEBD是菱形;

(2)DC,EFBF3,求菱形AEBD的面積.

【答案】1)見(jiàn)解析;(215.

【解析】

1)由AFD≌△BFE,推出AD=BE,可知四邊形AEBD是平行四邊形,再根據(jù)DBDA可得結(jié)論;

2)先求出BF的長(zhǎng),再求出EF的長(zhǎng)即可解決問(wèn)題.

1)證明:∵四邊形ABCD是平行四邊形,

ADCE,

∴∠DAF=EBF,

∵∠AFD=EFB,AF=FB,

∴△AFD≌△BFE,

AD=EB,∵ADEB,

∴四邊形AEBD是平行四邊形,

BD=AD,

∴四邊形AEBD是菱形.

2)∵四邊形ABCD是平行四邊形,

CD=AB=,

∵四邊形AEBD是菱形,

ABDEAF=FB=,

EFBF3

EF=

DE=2EF=

S菱形AEBD=ABDE=××3=15

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD,AB=4,AD=9點(diǎn)F是邊BC上的一點(diǎn),點(diǎn)EAD上的一點(diǎn),AE:ED=1:2,連接EF、DF,EF=2,CF的長(zhǎng)為______________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,OA2,OB4,以A點(diǎn)為頂點(diǎn)、AB為腰在第三象限作等腰RtABC

1)求C點(diǎn)的坐標(biāo);

2)如圖1,在平面內(nèi)是否存在一點(diǎn)H,使得以A、C、B、H為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出H點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3)如圖1點(diǎn)M1,﹣1)是第四象限內(nèi)的一點(diǎn),在y軸上是否存在一點(diǎn)F,使得|FMFC|的值最大?若存在,請(qǐng)求出F點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年周杰倫地表最強(qiáng)巡回演唱會(huì)于1117日在貴陽(yáng)奧林匹克體育中心舉行,小穎購(gòu)買了一張票價(jià)為四位數(shù)的場(chǎng)地票(動(dòng)感地帶專屬),而小明一張購(gòu)買了票價(jià)為三位數(shù)的看臺(tái)票(動(dòng)感地帶專屬)。小穎說(shuō),在你的票價(jià)前面多寫個(gè)1,都還比我的便宜200;小明說(shuō),只需在我的票價(jià)后多寫個(gè)0,就比你的貴3120”.請(qǐng)問(wèn)小穎和小明購(gòu)買的演唱會(huì)門票各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家商場(chǎng)平時(shí)以同樣價(jià)格出售相同的商品,春節(jié)期間兩家商場(chǎng)都讓利酬賓,其中甲商場(chǎng)所有商品按8折出售,乙商場(chǎng)對(duì)一次購(gòu)物中超過(guò)200元后的價(jià)格部分打7折.

(1)以x(單位:元)表示商品原價(jià),y(單位:元)表示購(gòu)物金額,分別就兩家商場(chǎng)的讓利方式寫出y關(guān)于x的函數(shù)解析式;

(2)在同一直角坐標(biāo)系中畫(huà)出(1)中函數(shù)的圖象;

(3)春節(jié)期間如何選擇這兩家商場(chǎng)去購(gòu)物更省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A、B分別是x軸上位于原點(diǎn)左右兩側(cè)的點(diǎn),點(diǎn)P在第一象限,且它的縱坐標(biāo)為3,直線APy軸于點(diǎn)C(0,2),直線PBy軸于點(diǎn)D,且ΔAOP的面積為6.

(1)求直線AP的關(guān)系式;

(2)ΔBOPΔAOP的面積相等,求ΔBOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將口ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.

(1)求證:△ABF≌△ECF

(2)若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績(jī)分別繪制成下列兩個(gè)統(tǒng)計(jì)圖:

  

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均成績(jī)(環(huán))

中位數(shù)(環(huán))

眾數(shù)(環(huán))

方差

a

7

7

1.2

7

b

8

c

(1)寫出表格中a,b,c的值;

(2)分別運(yùn)用表中的四個(gè)統(tǒng)計(jì)量,簡(jiǎn)要分析這兩名隊(duì)員的射擊成績(jī),若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一列數(shù)中,已知,當(dāng)時(shí),(符號(hào)表示不超過(guò)的最大整數(shù),例如,則等于( )

A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案