【題目】如圖,在平面直角坐標(biāo)系xoy中,A(-1,5)、B(-1,0),C(-4,3).

(1)ABC的面積是

(2)在下圖中畫出△ABC向下平移2個(gè)單位,向右平移5個(gè)單位后的△A1B1C1

(3)寫出點(diǎn)A1、B1、C1的坐標(biāo).

【答案】(1)7.5;(2)見解析(3)A1(4,3),B1(4,2),C1(1,1).

【解析】

(1)根據(jù)三角形面積求法得出即可;
(2)根據(jù)已知將△ABC各頂點(diǎn)向下平移2個(gè)單位,向右平移5個(gè)單位得到各對(duì)應(yīng)點(diǎn)即可得出答案;
(3)利用(2)中平移后各點(diǎn)得出坐標(biāo)即可.

(1)△ABC的面積是:×3×5=7.5;

(2)如圖所示:A1B1C1,即為所求;

(3)點(diǎn)A1,B1,C1的坐標(biāo)分別為:A1(4,3),B1(4,2),C1(1,1).

故答案為:(1)7.5;(2)如圖(3)A1(4,3),B1(4,2),C1(1,1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雙峰縣教育局要求各學(xué)校加強(qiáng)對(duì)學(xué)生的安全教育,全縣各中小學(xué)校引起高度重視,小剛就本班同學(xué)對(duì)安全知識(shí)的了解程度進(jìn)行了一次調(diào)查統(tǒng)計(jì).他將統(tǒng)計(jì)結(jié)果分為三類,A:熟悉;B:了解較多;C:一般了解。圖和圖是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答以下問題:

(1)求小剛所在的班級(jí)共有多少名學(xué)生;

(2)在條形圖中,將表示“一般了解”的部分補(bǔ)充完整‘’

(3)在扇形統(tǒng)計(jì)圖中,計(jì)算“了解較多”部分所對(duì)應(yīng)的扇形圓心角的度數(shù);

(4)如果小剛所在年級(jí)共1000名同學(xué),請(qǐng)你估算全年級(jí)對(duì)安全知識(shí)“了解較多”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在正方形ABCD中,點(diǎn)EF分別在BCCD上,AE = AF

1)求證:BE = DF;

2)連接ACEF于點(diǎn)O,延長OC至點(diǎn)M,使OM = OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,邊長,菱形的三個(gè)頂點(diǎn)分別在正方形的邊連接,則的面積等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,平分于點(diǎn),過點(diǎn)于點(diǎn),過

1)若,求的度數(shù);

2)若,求的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,點(diǎn)沿邊從點(diǎn)開始向點(diǎn)秒的速度移動(dòng);點(diǎn)沿邊從點(diǎn)開始向點(diǎn)秒的速度移動(dòng),如果同時(shí)出發(fā),用(秒)表示移動(dòng)的時(shí)間().

1)當(dāng)為何值時(shí),為等腰直角三角形.

2)求當(dāng)移動(dòng)到為等腰直角三角形時(shí)斜邊的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】江南農(nóng)場收割小麥,已知1臺(tái)大型收割機(jī)和3臺(tái)小型收割機(jī)1小時(shí)可以收割小麥1.4公頃,2臺(tái)大型收割機(jī)和5臺(tái)小型收割機(jī)1小時(shí)可以收割小麥2.5公頃.

(1)每臺(tái)大型收割機(jī)和每臺(tái)小型收割機(jī)1小時(shí)收割小麥各多少公頃?

(2)大型收割機(jī)每小時(shí)費(fèi)用為300元,小型收割機(jī)每小時(shí)費(fèi)用為200元,兩種型號(hào)的收割機(jī)一共有10臺(tái),要求2小時(shí)完成8公頃小麥的收割任務(wù),且總費(fèi)用不超過5400元,有幾種方案?請(qǐng)指出費(fèi)用最低的一種方案,并求出相應(yīng)的費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,EBC邊一點(diǎn),DE平分∠ADC,EF∥DCAD邊于點(diǎn)F,連結(jié)BD.

(1)求證:四邊形EFCD是正方形;

(2)若BE=1,ED=2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平行四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,經(jīng)過點(diǎn)O的直線AD于點(diǎn)E,交BC于點(diǎn)F

1)求證:OE=OF;

2)如圖2,連接AF、CE,當(dāng)AFFC時(shí),在不添加輔助線的情況下,直接寫出等于的線段.

查看答案和解析>>

同步練習(xí)冊(cè)答案