【題目】在△ABC中,命題:①若∠B=∠C-∠A,則△ABC是直角三角形.②若a2=(b+c)(b-c),則△ABC是直角三角形.③若∠A∶∠B∶∠C=3∶4∶5,則△ABC是直角三角形.④若a∶b∶c=5∶4∶3.則△ABC是直角三角形. 其中假命題個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】A
【解析】
有一個(gè)角是直角的三角形是直角三角形,兩邊的平方和等于第三邊的平方的三角形是直角三角形.
解:①由∠B=∠C-∠A,∴∠B+∠A=∠C,又因?yàn)槿切蝺?nèi)角和為180°,∴∠C=90°,所以△ABC是直角三角形,故此為真命題.
②若a2=(b+c)(b-c),則可知a2 =b2- c2所以a2+c2=b2,所以△ABC是直角三角形,故此為真命題.
C、若∠A:∠B:∠C=3:4:5,則設(shè)∠A=3x°,∠B=4x°,∠C=5x°,根據(jù)三角形內(nèi)角和可得3x°+4x°+5x°=180°,解得x=15°,所以最大的∠C為75°,不是直角三角形,故此為假命題.
D、若a:b:c=5:4:3,設(shè)a=5k,b=4k, c=3k,∵,則△ABC是直角三角形,故此為真命題.
∴假命題共1個(gè),
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在△ABC中,AB=AC=13,BC=10,D是AB的中點(diǎn),過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E,
求:(1)△ABC的面積;
(2)DE的長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小穎上來(lái)采取以下規(guī)定決定誰(shuí)將獲得僅有一張科普?qǐng)?bào)告入場(chǎng)券:在不透明的布袋里裝有除顏色之外均相同的2個(gè)紅球和1個(gè)綠球,小明先取出一個(gè)球,記住顏色后放回,然后小穎再取出一個(gè)球.若兩次取出的球都是紅色,則小明獲得入場(chǎng)券,否則小穎獲得入場(chǎng)券.你認(rèn)為這個(gè)規(guī)則對(duì)雙方公平嗎?請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了更好地保護(hù)美麗如畫(huà)的邛海濕地,西昌市污水處理廠決定先購(gòu)買(mǎi)A,B兩種型號(hào)的污水處理設(shè)備共20臺(tái),對(duì)邛海濕地周邊污水進(jìn)行處理.每臺(tái)A型污水處理設(shè)備12萬(wàn)元,每臺(tái)B型污水處理設(shè)備10萬(wàn)元.已知1臺(tái)A型污水處理設(shè)備和2臺(tái)B型污水處理設(shè)備每周可以處理污水640 t,2臺(tái)A型污水處理設(shè)備和3臺(tái)B型污水處理設(shè)備每周可以處理污水1 080 t.
(1)求A,B兩種型號(hào)的污水處理設(shè)備每周每臺(tái)分別可以處理污水多少噸.
(2)經(jīng)預(yù)算,市污水處理廠購(gòu)買(mǎi)設(shè)備的資金不超過(guò)230萬(wàn)元,每周處理污水的量不低于4 500 t,請(qǐng)你列舉出所有購(gòu)買(mǎi)方案,并指出哪種方案所需資金最少,最少是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC,AB=AC,∠BAC=90°,D為△ABC外部一點(diǎn),∠BDC=45°,點(diǎn)F在CD上且AF∥DB.
(1)如圖①,求證:;
(2)如圖②,將△BCD沿BC翻折得到△BCD1,過(guò)點(diǎn)B作BG⊥CD1,垂足為G,連接AG交CD于E,交BC于H.若AF=,∠BCD=15°,求AG的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】知識(shí)儲(chǔ)備
如圖①,點(diǎn)E、F分別是y=3和y=﹣1上的動(dòng)點(diǎn),則EF的最小值是 ;
方法儲(chǔ)備
直角坐標(biāo)系的建立,在代數(shù)和幾何之間架起了一座橋梁,用代數(shù)的方法解決幾何問(wèn)題:某數(shù)學(xué)小組在自主學(xué)習(xí)時(shí)了解了三角形的中位線及相關(guān)的定理,在學(xué)習(xí)了《坐標(biāo)與位置)后,該小組同學(xué)深入思考,利用中點(diǎn)坐標(biāo)公式,給出了三角形中位線定理的一種證明方法.如圖②,在△ABC中,點(diǎn)D,E分別是AB,AC邊的中點(diǎn),DE稱為△ABC的中位線,則DE∥BC且DE=BC.該數(shù)學(xué)小組建立如圖③的直角坐標(biāo)系,設(shè)點(diǎn)A(a,b),點(diǎn)C (0,c)(c>0).請(qǐng)你利用該數(shù)學(xué)學(xué)習(xí)小組的思路證明DE∥BC且DE=BC.(提示:中點(diǎn)坐標(biāo)公式,A(x1,y1),B(x2,y2),則A,B中點(diǎn)坐標(biāo)為(,).
綜合應(yīng)用
結(jié)合上述知識(shí)和方法解決問(wèn)題,如圖④,在△ABC中,∠ACB=90°,AC=3,BC=6,延長(zhǎng)AC至點(diǎn) D.DE⊥AD,連接EC并延長(zhǎng)交AB邊于點(diǎn)F.若2CD+DE=6,則EF是否存在最小值,若存在,求出最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫(xiě)有A,B,B.這些卡片除字母外完全相同,從中隨機(jī)摸出一張,記下字母后放回,充分洗勻后,再?gòu)闹忻鲆粡,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)說(shuō)明現(xiàn)由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是等邊三角形,將一塊含有30°角的直角三角尺DEF按如圖所示放置,讓三角尺在BC所在的直線上向右平移.如圖①,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)A恰好落在三角尺的斜邊DF上.
(1)利用圖①證明:EF=2BC.
(2)在三角尺的平移過(guò)程中,在圖②中線段AH=BE是否始終成立(假定AB,AC與三角尺的斜邊的交點(diǎn)分別為G,H)?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com