【題目】如圖,已知△ABC(AC<AB<BC),請用直尺(不帶刻度)和圓規(guī),按下列要求作圖(不要求寫作法,但要保留作圖痕跡):
(1)在邊BC上確定一點P,使得PA+PC=BC;
(2)作出一個△DEF,使得:①△DEF是直角三角形;②△DEF的周長等于邊BC的長。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人同時登山,甲乙兩人距地面的高度(米與登山時間(分之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山的速度是 米分鐘,乙在地提速時距地面的高度為 米;
(2)直接寫出甲距地面高度(米和(分之間的函數(shù)關(guān)系式;
(3)若乙提速后,乙的速度是甲登山速度的3倍.請問登山多長時間時,乙追上了甲,此時乙距地的高度為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在⊙O上,連接CO并延長交弦AB于點D,,連接AC、OB,若CD=8,AC=.
(1)求弦AB的長;
(2)求sin∠ABO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為4,頂點B與原點O重合,點C在x軸的正半軸上,過點B作BA1⊥AC于點A1,過點A1作A1B1∥OA,交OC于點B1;過點B1作B1A2⊥AC于點A2,過點A2作A2B2∥OA,交OC于點B2;……,按此規(guī)律進(jìn)行下去,點A2020的縱坐標(biāo)是_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年4月23日是第23個“世界讀書日”,也是江蘇省第四個法定的全民閱讀日。由市文明辦、市全民閱讀辦、市文廣新局等單位聯(lián)合主辦的“2018無錫市第三個全民閱讀日”系列活動即將啟動。某校圍繞學(xué)生日人均閱讀時間這一問題,對初二學(xué)生進(jìn)行隨機抽樣調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖(不完整),請你根據(jù)圖中提供的信息解答下列問題:
(1)本次抽樣調(diào)查的樣本容量是 .
(2)請將條形統(tǒng)計圖補充完整.
(3)在扇形統(tǒng)計圖中,計算出日人均閱讀時間在1~1.5小時對應(yīng)的圓心角是 度.
(4)根據(jù)本次抽樣調(diào)查,試估計我市12000名初二學(xué)生中日人均閱讀時間在0.5~1.5小時的多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是某校七年級小朋友小敏這學(xué)期第一周和第二周做家務(wù)事的時間統(tǒng)計表,已知小敏每次在做家務(wù)事中洗碗的時間相同,掃地的時間也相同.
每周做家務(wù)總時間(分) | 洗碗次數(shù) | 掃地的次數(shù) | |
第一周 | 44 | 2 | 3 |
第二周 | 42 | 1 | 4 |
(1)求小敏每次洗碗的時間和掃地的時間各是多少?
(2)為鼓勵小敏做家務(wù),小敏的家長準(zhǔn)備洗碗一次付12元,掃地一次付8元,總費用不超過100元。請問小敏如何安排洗碗與掃地的次數(shù),既能夠讓花費的總時間最少,又能夠全部拿到100元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,AC=BC,∠ACB=45°,將三角形ABC沿著AC翻折,點B落在點E處,聯(lián)結(jié)DE,那么的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們經(jīng)濟(jì)收入的不斷提高,汽車已越來越多地進(jìn)入到各個家庭.某大型超市為緩解停車難問題,建筑設(shè)計師提供了樓頂停車場的設(shè)計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標(biāo)志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:數(shù)和形是數(shù)學(xué)的兩個主要研究對象,我們經(jīng)常運用數(shù)形結(jié)合,樹形轉(zhuǎn)化的方法解決一些數(shù)學(xué)問題,小明在求同一坐標(biāo)軸上兩點間的距離時發(fā)現(xiàn),對于平面直角坐標(biāo)系內(nèi)任意兩點P1(x1,y1),P2(x2,y2),可通過構(gòu)造直角三角形利用圖1得到結(jié)論:P1P2=,他還利用圖2證明了線段P1P2的中點P(x,y),P的坐標(biāo)公式:x=,y=.
啟發(fā)應(yīng)用:
如圖3:在平面直角坐標(biāo)系中,已知A(8,0),B(0,6),C(1,7),⊙M經(jīng)過原點O及點A,B,
(1)求⊙M的半徑及圓心M的坐標(biāo);
(2)判斷點C與⊙M的位置關(guān)系,并說明理由;
(3)若∠BOA的平分線交AB于點N,交⊙M于點E,分別求出OE的表達(dá)式y1,過點M的反比例函數(shù)的表達(dá)式y2,并根據(jù)圖象,當(dāng)y2>y1>0時,請直接寫出x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com