【題目】1)作圖發(fā)現(xiàn):

如圖1,已知,小涵同學(xué)以、為邊向外作等邊和等邊,連接,.這時(shí)他發(fā)現(xiàn)的數(shù)量關(guān)系是

2)拓展探究:

如圖2,已知,小涵同學(xué)以、為邊向外作正方形和正方形,連接,,試判斷之間的數(shù)量關(guān)系,并說明理由.

3)解決問題

如圖3,要測量池塘兩岸相對的兩點(diǎn),的距離,已經(jīng)測得,米,,則 米.

【答案】1BE=CD;(2BE=CD,理由見解析;(3200

【解析】

1)利用等邊三角形的性質(zhì)得出,然后有,再利用SAS即可證明,則有;

2)利用正方形的性質(zhì)得出,然后有,再利用SAS即可證明,則有;

3)根據(jù)前(2)問的啟發(fā),過作等腰直角,連接,,同樣的方法證明,則有,在中利用勾股定理即可求出CD的值,則BE的值可求.

1)如圖1所示:

都是等邊三角形,

,

,

,

中,

,

2

四邊形均為正方形,

,,,

,

中,

,

,

3)如圖3,

作等腰直角,,

米,,

米,

連接,,

中,

,

,

,

中,米,米,

根據(jù)勾股定理得:(米),

米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲是一個大長方形剪去一個小長方形后形成的圖形,已知動點(diǎn)P以每秒2cm的速度沿圖甲的邊框按從B→C→D→E→F→A的路徑移動,相應(yīng)的△ABP的面積S與時(shí)間t之間的關(guān)系如圖乙中的圖象表示.若AB=6cm,試回答下列問題

(1)圖甲中的BC長是多少?

(2)圖乙中的a是多少?

(3)圖甲中的圖形面積的多少?

(4)圖乙中的b是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱體的高為8cm,底面周長為4cm,小螞蟻在圓柱表面爬行,從A點(diǎn)到B點(diǎn),路線如圖所示,則最短路程為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若點(diǎn)Pa,b)在函數(shù)y=的圖象上,將以a為二次項(xiàng)系數(shù),b為一次項(xiàng)系數(shù)構(gòu)造的二次函數(shù)y=ax2+bx稱為函數(shù)y=的一個派生函數(shù).例如:點(diǎn)(2, )在函數(shù)y=的圖象上,則函數(shù)y=2x2+ 稱為函數(shù)y=的一個派生函數(shù).現(xiàn)給出以下兩個命題:

1)存在函數(shù)y=的一個派生函數(shù),其圖象的對稱軸在y軸的右側(cè)

2)函數(shù)y=的所有派生函數(shù)的圖象都經(jīng)過同一點(diǎn),下列判斷正確的是(  )

A. 命題(1)與命題(2)都是真命題

B. 命題(1)與命題(2)都是假命題

C. 命題(1)是假命題,命題(2)是真命題

D. 命題(1)是真命題,命題(2)是假命題

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織一項(xiàng)球類對抗賽,在本校隨機(jī)調(diào)查了若干名學(xué)生,對他們每人最喜歡的球類運(yùn)動進(jìn)行了統(tǒng)計(jì),并繪制如圖1、圖2所示的條形和扇形統(tǒng)計(jì)圖.

根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問題:

1)求本次被調(diào)查的學(xué)生人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

2)若全校有1500名學(xué)生,請你估計(jì)該校最喜歡籃球運(yùn)動的學(xué)生人數(shù);

3)根據(jù)調(diào)查結(jié)果,請你為學(xué)校即將組織的一項(xiàng)球類比賽提出合理化建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,已知OA=,tan∠AOC=

(1)求a,k的值及點(diǎn)B的坐標(biāo);

(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;

(3)在y軸上存在一點(diǎn)P,使得PDCODC相似,請你求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCAB=AC,∠BAC=90°,點(diǎn)PBC上的一動點(diǎn),AP=AQ,∠PAQ=90°,連接CQ

(1)求證:CQBC

(2)△ACQ能否是直角三角形?若能,請直接寫出此時(shí)點(diǎn)P的位置;若不能,請說明理由.

(3)當(dāng)點(diǎn)PBC上什么位置時(shí),△ACQ是等腰三角形?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設(shè)計(jì)圖,其中MN是水平線,MNAD,ADDE,CFAB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點(diǎn)CDE上,CD=0.5米,CD是限高標(biāo)志牌的高度(標(biāo)志牌上寫有:限高   米).如果進(jìn)入該車庫車輛的高度不能超過線段CF的長,則該停車庫限高多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸的一個交點(diǎn)為B(4,0),另一個交點(diǎn)為A,且與y軸相交于C點(diǎn)

(1)求m的值及C點(diǎn)坐標(biāo);

(2)在直線BC上方的拋物線上是否存在一點(diǎn)M,使得它與B,C兩點(diǎn)構(gòu)成的三角形面積最大,若存在,求出此時(shí)M點(diǎn)坐標(biāo);若不存在,請簡要說明理由;

(3)P為拋物線上一點(diǎn),它關(guān)于直線BC的對稱點(diǎn)為Q

①當(dāng)四邊形PBQC為菱形時(shí),求點(diǎn)P的坐標(biāo);

②點(diǎn)P的橫坐標(biāo)為t(0t4),當(dāng)t為何值時(shí),四邊形PBQC的面積最大,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案