(本題滿分12分)在平面直角坐標系xOy中,邊長為a(a為大于0的常數(shù))的正方形ABCD的對角線AC、BD相交于點P,頂點A在x軸正半軸上運動,頂點B在y軸正半軸上運動(x軸的正半軸、y軸的正半軸都不包含原點O),頂點C、D都在第一象限。
(1)當∠BAO=45°時,求點P的坐標;
(2)求證:無論點A在x軸正半軸上、點B在y軸正半軸上怎樣運動,點P都在∠AOB的平分線上;
(3)設(shè)點P到x軸的距離為h,試確定h的取值范圍,并說明理由。
.解:(1)當∠BAO=45°時,四邊形OAPB為正方形
OA=OB=a·cos45°=a
∴P點坐標為(a,a)
(2)作DE⊥x軸于E,PF ⊥x軸于F,
設(shè)A點坐標為(m,0),B點坐標為(0,n)
∵∠BAO+∠DAE=∠BAO+∠ABO=90°
∴∠DAE=∠ABO
在△AOB和△DEA中:
∴△AOB≌和△DEA(AAS)
∴AE=0B=n,DE=OA=m,
則D點坐標為(m+n,m)
∵點P為BD的中點,且B點坐標為(0,n)
∴P點坐標為(,)∴PF=OF=
∴∠POF=45°,
∴OP平分∠AOB。即無論點A在x軸正半軸上、點B在y軸正半軸上怎樣運動,點P都在∠AOB的平分線上;
(3)當A,B分別在x軸正半軸和y軸負半軸上運動時,設(shè)PF與PA的夾角為α,
則0°≤α<45°
h=PF=PA·cosα=a·cosα
∵0°≤α<45°∴<cosα≤1
∴a<h≤a
【解析】略
科目:初中數(shù)學 來源: 題型:
(本題滿分12分)在平面直角坐標系中,一次函數(shù)的圖象與坐標軸圍成的三角形,叫做此一次函數(shù)的坐標三角形.例如,圖中的一次函數(shù)的圖象與x,y軸分別交于點A,B,則△OAB為此函數(shù)的坐標三角形.
(1)求函數(shù)y=x+3的坐標三角形的三條邊長;
(2)若函數(shù)y=x+b(b為常數(shù))的坐標三角形周長為16,求此三角形面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(本題滿分12分)在平面直角坐標系xOy中,邊長為a(a為大于0的常數(shù))的正方形ABCD的對角線AC、BD相交于點P,頂點A在x軸正半軸上運動,頂點B在y軸正半軸上運動(x軸的正半軸、y軸的正半軸都不包含原點O),頂點C、D都在第一象限。
(1)當∠BAO=45°時,求點P的坐標;
(2)求證:無論點A在x軸正半軸上、點B在y軸正半軸上怎樣運動,點P都在∠AOB的平分線上;
(3)設(shè)點P到x軸的距離為h,試確定h的取值范圍,并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(本題滿分12分)在平面直角坐標系中,一次函數(shù)的圖象與坐標軸圍成的三角形,叫做此一次函數(shù)的坐標三角形.例如,圖中的一次函數(shù)的圖象與x,y軸分別交于點A,B,則△OAB為此函數(shù)的坐標三角形.
(1)求函數(shù)y=x+3的坐標三角形的三條邊長;
(2)若函數(shù)y=x+b(b為常數(shù))的坐標三角形周長為16,求此三角形面積.
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012年江蘇省揚州市九年級第一學期期末考試數(shù)學卷 題型:解答題
(本題滿分12分)在直角坐標系中,拋物線經(jīng)過點(0,10)
和點(4,2).
1.(1) 求這條拋物線的函數(shù)關(guān)系式.
2.(2)如圖,在邊長一定的矩形ABCD中,CD=1,點C在y軸右側(cè)沿拋物線 滑動,在滑動過程中CD∥x軸,AB在CD的下方.當點D在y軸上時,AB正好落在x軸上.
①求邊BC的長.
②當矩形ABCD在滑動過程中被x軸分成兩部分的面
積比為1:4時,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源:江蘇省蘇州市高新區(qū)2013屆七年級下學期期末考試數(shù)學試題 題型:解答題
(本題滿分12分)在平面直角坐標系中,已知二次函數(shù)的圖象與x軸交于A,B兩點(點A在點B的左邊),AB=4,與y軸交于點C,且過點(2,3).
(1)求此二次函數(shù)的表達式;
(2)若拋物線的頂點為D,連接CD、CB,問拋物線上是否存在點P,使得∠PBC+∠BDC=90°. 若存在,求出點P的坐標;若不存在,請說明理由;
(3)點K拋物線上C關(guān)于對稱軸的對稱點,點G拋物線上的動點,在x軸上是否存在點F,使A、K、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標;如果不存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com