【題目】如圖,已知△ABC∽△DEF,且相似比為k,則k=________,直線y=kx+k的圖象必經(jīng)過________象限.

【答案】 一、二、三

【解析】

(1)由△ABC∽△DEF,其相似比為k,根據(jù)相似三角形的對應邊成比例,即可求得k的值,

(2) 因為直線y=kx+kk=,所以得解析式,再根據(jù)k>0時,直線必經(jīng)過一、三象限.k<0時,直線必經(jīng)過二、四象限.b>0時,直線與y軸正半軸相交.b=0時,直線過原點;b<0時,直線與y軸負半軸相交即可求出直線經(jīng)過的象限.

解:(1)∵△ABC∽△DEF,其相似比為k,
∴k== = ,

故答案為:k=

(2)∵直線y=kx+kk=

∴直線解析式為:y=x+

∵k=>0,b=>0

該直線經(jīng)過第一、三象限,且與y軸交于正半軸,

∴直線y=x+經(jīng)過一、二、三象限.

故答案為:一、二、三

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某公司計劃購買A,B兩種型號的機器人搬運材料.已知A型機器人比B型機器人每小時多搬運30kg材料,且A型機器人搬運1000kg材料所用的時間與B型機器人搬運800kg材料所用的時間相同.

(1)求A,B兩種型號的機器人每小時分別搬運多少材料;

(2)該公司計劃采購A,B兩種型號的機器人共20臺,要求每小時搬運材料不得少于2800kg,則至少購進A型機器人多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具店購進一批紀念冊,每本進價為20元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.

(1)求出y與x的函數(shù)關系式;

(2)設該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把二次涵數(shù)的圖象先向左平移2個單位長度,再向上平移4個單位長度,得到二次函數(shù)的圖象.

(1)試確定,的值;

(2)指出二次函數(shù)圖象的開口方向、對稱軸和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市正在開展“食品安全城市”創(chuàng)建活動,為了解學生對食品安全知識的了解情況,學校隨機抽取了部分學生進行問卷調查,將調查結果按照“非常了解、了解、了解較少、不了解”四類分別進行統(tǒng)計,并繪制了下列兩幅統(tǒng)計圖(不完整).請根據(jù)圖中信息,解答下列問題:

1)此次共調查了__________名學生;

2)扇形統(tǒng)計圖中所在扇形的圓心角為__________°;

3)將上面的條形統(tǒng)計圖補充完整;

4)若該校共有1600名學生,請你估計對食品安全知識“非常了解”的學生的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的邊BC在直線l上,AD是ABC的高,ABC=45°,BC=6cm,AB=2cm點P從點B出發(fā)沿BC方向以1cm/s速度向點C運動,當點P到點C時,停止運動PQBC,PQ交AB或AC于點Q,以PQ為一邊向右側作矩形PQRS,PS=2PQ矩形PQRS與ABC的重疊部分的面積為S(cm2),點P的運動時間為t(s)回答下列問題:

(1)AD= cm;

(2)當點R在邊AC上時,求t的值;

(3)求S與t之間的函數(shù)關系式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D是△ABC內一點,點EF,GH分別是AB,ACCD,BD的中點。

1)求證:四邊形EFGH是平行四邊形;(2)已知AD6,BD4,CD3,∠BDC90°,求四邊形EFGH的周長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l為正比例函數(shù)的圖象,點的坐標為,過點x軸的垂線交直線l于點,以為邊作正方形;過點作直線l的垂線,垂足為,交x軸于點,以為邊作正方形;過點x軸的垂線,垂足為,交直線l于點,以為邊作正方形;……按此規(guī)律操作下去,得到的正方形的面積是______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖平面直角坐標系中,點,軸上,,點軸上方,,,線段軸于點,,連接,平分,過點

1)點的坐標為

2)將沿線段向右平移得,當點重合時停止運動,記的重疊部分面積為,點為線段上一動點,當時,求的最小值;

3)當移動到點重合時,將繞點旋轉一周,旋轉過程中,直線分別與直線、直線交于點、點,作點關于直線的對稱點,連接、、.當為直角三角形時,直接寫出線段的長.

查看答案和解析>>

同步練習冊答案