【題目】如圖在ABCD,∠ABC的平分線交AD于點E,延長BE交CD的延長線于F.

(1)若∠F=20°,求∠A的度數(shù);
(2)若AB=5,BC=8,CE⊥AD,求ABCD的面積;

【答案】
(1)

解:∵四邊形ABCD是平行四邊形,

∴AD∥BC,AD=BC=8,CD=AB=5,AB∥CD,

∴∠AEB=∠CBF,∠ABE=∠F=20°,

∵∠ABC的平分線交AD于點E,

∴∠ABE=∠CBF,

∴∠AEB=∠ABE=20°,

∴AE=AB,∠A=(180°-20°-20°)÷2=140°;


(2)

∵AE=AB=5,AD=BC=8,CD=AB=5,

∴DE=AD-AE=3,

∵CE⊥AD,

∴CE=

=4,

ABCD的面積=ADCE=8×4=32.


【解析】(1)由平行四邊形的性質(zhì)和已知條件得出∠AEB=∠CBF,∠ABE=∠F=20°,證出∠AEB=∠ABE=20°,由三角形內(nèi)角和定理求出結(jié)果即可;(2)求出DE,由勾股定理求出CE,即可得出結(jié)果.
【考點精析】掌握三角形的內(nèi)角和外角和勾股定理的概念是解答本題的根本,需要知道三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的圖象與x軸、y軸分別相交于點A、B,點P在該函數(shù)的圖象上,P到x軸、y軸的距離分別為

(1)當P為線段AB的中點時,求的值;

(2)直接寫出的范圍,并求當時點P的坐標;

(3)若在線段AB上存在無數(shù)個P點,使(a為常數(shù)),求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)為AB的中點,DE與AB交于點G,EF與AC交于點H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;其中正確結(jié)論的為(請將所有正確的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各數(shù)中,最小的是(
A.﹣3
B.﹣0.2
C.0
D.|﹣4|

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算。
(1)你發(fā)現(xiàn)了嗎?( 2= × ,( 2= = × = × 由上述計算,我們發(fā)現(xiàn)( 22;
(2)仿照(1),請你通過計算,判斷( 3與( 3之間的關(guān)系.
(3)我們可以發(fā)現(xiàn):( mm(ab≠0)
(4)計算:( 4×( 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是(  )

A.a25a2=﹣5B.(a2)3a6C.2a+b2abD.a2a4a6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖中的折線ABC表示某汽車的耗油量y(單位:L/km)與速度x(單位:km/h)之間的函數(shù)關(guān)系(30x120),已知線段BC表示的函數(shù)關(guān)系中,該汽車的速度每增加1km/h,耗油量增加0.002L/km.

(1)當速度為50km/h、100km/h時,該汽車的耗油量分別為 L/km、 L/km.

(2)求線段AB所表示的y與x之間的函數(shù)表達式.

(3)速度是多少時,該汽車的耗油量最低?最低是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)的圖象與x軸、y軸分別交于點A、B,把RtAOB繞點A順時針旋轉(zhuǎn)角α(30°α180°),得到AO′B′.

(1)當α=60°時,判斷點B是否在直線O′B′上,并說明理由;

(2)連接OO′,設(shè)OO′與AB交于點D,當α為何值時,四邊形ADO′B′是平行四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,天平右盤中的每個砝碼的質(zhì)量都是1克,則物體A的質(zhì)量m克的取值范圍表示在數(shù)軸上為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案