【題目】如圖,邊長(zhǎng)為2a的等邊△ABC中,M是高CH所在直線上的一個(gè)動(dòng)點(diǎn),連接MB,將線段BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接HN.則在點(diǎn)M運(yùn)動(dòng)過(guò)程中,線段HN長(zhǎng)度的最小值是( 。
A. B. aC. D.
【答案】A
【解析】
取CB的中點(diǎn)G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明∴△MBG≌△NBH,再根據(jù)全等三角形對(duì)應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時(shí)最短,再根據(jù)∠BCH=30°求解即可.
如圖,取BC的中點(diǎn)G,連接MG,
∵旋轉(zhuǎn)角為60°,
∴∠MBH+∠HBN=60°,
又∵∠MBH+∠MBC=∠ABC=60°,
∴∠HBN=∠GBM,
∵CH是等邊△ABC的對(duì)稱軸,
∴HB=AB,
∴HB=BG,
又∵MB旋轉(zhuǎn)到BN,
∴BM=BN,
在△MBG和△NBH中,
,
∴△MBG≌△NBH(SAS),
∴MG=NH,
根據(jù)垂線段最短,MG⊥CH時(shí),MG最短,即HN最短,
此時(shí)∵∠BCH=×60°=30°,CG=AB=×2a=a,
∴MG=CG=×a=,
∴HN=,
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
工廠加工某種新型材料,首先要將材料進(jìn)行加溫處理,使這種材料保持在一定的溫度范圍內(nèi)方可進(jìn)行繼續(xù)加工處理這種材料時(shí),材料溫度是時(shí)間的函數(shù)下面是小明同學(xué)研究該函數(shù)的過(guò)程,把它補(bǔ)充完整:
在這個(gè)函數(shù)關(guān)系中,自變量x的取值范圍是______.
如表記錄了17min內(nèi)10個(gè)時(shí)間點(diǎn)材料溫度y隨時(shí)間x變化的情況:
時(shí)間 | 0 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | |
溫度 | 15 | 24 | 42 | 60 | m |
上表中m的值為______.
如圖,在平面直角坐標(biāo)系xOy中,已經(jīng)描出了上表中的部分點(diǎn)根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象.
根據(jù)列出的表格和所畫(huà)的函數(shù)圖象,可以得到,當(dāng)時(shí),y與x之間的函數(shù)表達(dá)式為______,當(dāng)時(shí),y與x之間的函數(shù)表達(dá)式為______.
根據(jù)工藝的要求,當(dāng)材料的溫度不低于時(shí),方可以進(jìn)行產(chǎn)品加工,在圖中所示的溫度變化過(guò)程中,可以進(jìn)行加工的時(shí)間長(zhǎng)度為______min.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,與BA的延長(zhǎng)線交于點(diǎn)D,DE⊥PO交PO延長(zhǎng)線于點(diǎn)E,連接PB,∠EDB=∠EPB.
(1)求證:PB是的切線.
(2)若PB=6,DB=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點(diǎn)E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)如果AB=4,AE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB=BC,對(duì)角線AC、BD交于點(diǎn)O,BD平分∠ABC,過(guò)點(diǎn)D作DE⊥BC,交BC的延長(zhǎng)線于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若DC=2,AC=4,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:方程cx2+bx+a=0是一元二次方程ax2+bx+c=0的倒方程.
(1)已知x=2是x2+2x+c=0的倒方程的解,求c的值;
(2)若一元二次方程ax2﹣2x+c=0無(wú)解,求證:它的倒方程也一定無(wú)解;
(3)一元二次方程ax2﹣2x+c=0(a≠c)與它的倒方程只有一個(gè)公共解,它的倒方程只有一個(gè)解,求a和c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)P在射線BC上(異于點(diǎn)B、C),直線AP與對(duì)角線BD及射線DC分別交于點(diǎn)F、Q.
(1)若BP=,求∠BAP的度數(shù);
(2)若點(diǎn)P在線段BC上,過(guò)點(diǎn)F作FG⊥CD,垂足為G,當(dāng)△FGC≌△QCP時(shí),求PC的長(zhǎng);
(3)以PQ為直徑作⊙M.
①判斷FC和⊙M的位置關(guān)系,并說(shuō)明理由;
②當(dāng)直線BD與⊙M相切時(shí),直接寫(xiě)出PC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線:()與,軸分別交于,兩點(diǎn),以為邊在直線的上方作正方形,反比例函數(shù)和的圖象分別過(guò)點(diǎn)和點(diǎn).若,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】京杭大運(yùn)河是世界文化遺產(chǎn).綜合實(shí)踐活動(dòng)小組為了測(cè)出某段運(yùn)河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點(diǎn)A、B和點(diǎn)C、D,先用卷尺量得AB=160m,CD=40m,再用測(cè)角儀測(cè)得∠CAB=30°,∠DBA=60°,求該段運(yùn)河的河寬(即CH的長(zhǎng)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com