【題目】閱讀下面材料:A、B在數(shù)軸上分別表示有理數(shù)ab,表示A、B兩點之間的距離。當(dāng)A、B兩點中有一點在原點時(假設(shè)A在原點),如圖①,

當(dāng)A、B兩點都在原點右側(cè)時,如圖②,

當(dāng)AB兩點都在原點左側(cè)時,如圖③,;

當(dāng)AB兩點在原點兩側(cè)時,如圖④,

請根據(jù)上述結(jié)論,回答下列問題:

(1)數(shù)軸上表示25的兩點問距離是______,數(shù)軸上表示2-6的兩點間距高是_________,數(shù)軸上表示-13的兩點間距離是____________.

(2)數(shù)軸上表示x-1的兩點AB之間的距離可表示為_________,若|AB|=2,則x的值為_____________.

(3)當(dāng)取最小值時,請寫出所有符合條件的x的整數(shù)值_______________.

【答案】138,4;(2|x+1||x-(-1)||-1-x|,1-3;(3-2,-10,1

【解析】

1)根據(jù)材料中的知識可以得到兩點之間的距離就是較大的數(shù)與較小的數(shù)的差,據(jù)此即可求解;

2)根據(jù)材料中的知識,即可直接寫出結(jié)果;

3)代數(shù)式|x-1|+|x+2|表示數(shù)軸上一點到1-2兩點的距離的和,根據(jù)兩點之間線段最短,進(jìn)而得出答案.

解:(1)數(shù)軸上表示2和5的兩點之間的距離是:5-2=3;

數(shù)軸上表示2-6的兩點之間的距離是2--6=8,

數(shù)軸上表示1-3的兩點之間的距離是1--3=4;

故答案為:38;4;

2)數(shù)軸上表示x-1的兩點之間的距離是|x+1|,

|AB|=2,則|x+1|=2,故x=1-3

故答案為:|x+1|,1-3

3)若|x+1|+|x-2|取最小值,那么表示x的點M-12之間的線段上,

所以x的整數(shù)值是-2,-1,0,1;

故答案為:-2,-10,1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格中,△ABC的頂點均在格點上,在平面直角坐標(biāo)系中如圖所示:完成下列問題:

(1)畫出△ABC繞點O逆時針旋轉(zhuǎn)90后的△A BC;B1的坐標(biāo)為___

(2)(1)的旋轉(zhuǎn)過程中,點B運動的路徑長是___

(3)作出△ABC關(guān)于原點O對稱的△ABC;C的坐標(biāo)為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)y1mx的圖象與反比例函數(shù)y2(m為常數(shù),m≠0)的圖象有一個交點的橫坐標(biāo)是2

(1)m的值;

(2)寫出當(dāng)y1y2時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

(1)求yx之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤為W(元),則當(dāng)售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?

(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像經(jīng)過點A(-1,0),并與反比例函數(shù))的圖像交于Bm,4

1)求的值;

2)以AB為一邊,在AB的左側(cè)作正方形,求C點坐標(biāo);

3)將正方形沿著軸的正方向,向右平移n個單位長度,得到正方形,線段的中點為點,若點和點同時落在反比例函數(shù)的圖像上,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等腰△ABC中,AC=BC,點OAB邊上,以O為圓心的圓經(jīng)過點C,交AB邊于點D,EF為⊙O的直徑,EFBC于點G,且D的中點.

(1)求證:AC是⊙O的切線;

(2)如圖2,延長CB交⊙O于點H,連接HDOE于點P,連接CF,求證:CF=DO+OP;

(3)在(2)的條件下,連接CD,若tanHDC=,CG=4,求OP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加快城市群的建設(shè)與發(fā)展,在A、B兩城市間新建一條城際鐵路,建成后,鐵路運行里程由現(xiàn)在的210km縮短至180km,平均時速要比現(xiàn)行的平均時速快200km,運行時間僅是現(xiàn)行時間的,求建成后的城際鐵路在A、B兩地的運行時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形中,,點分別是的中點. 已知兩底之差是6,兩腰之和是12,則的周長是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將矩形紙片ABCD沿對角線BD向上折疊,點C落在點E處,BEAD于點F

1)求證:BFDF;

2)如圖2,過點DDGBEBC于點G,連接FGBD于點O,若AB6,AD8,求FG的長.

查看答案和解析>>

同步練習(xí)冊答案