【題目】如圖的平面直角坐標(biāo)系中有一個正六邊形ABCDEF,其中C.D的坐標(biāo)分別為(1,0)和(2,0).若在無滑動的情況下,將這個六邊形沿著x軸向右滾動,則在滾動過程中,這個六邊形的頂點A.B.C.D.E、F中,會過點(45,2)的是點  ▲  

【答案】B。

解析分類歸納(圖形的變化類),坐標(biāo)與圖形性質(zhì),正多邊形和圓,旋轉(zhuǎn)的性質(zhì)。

正六邊形滾動一周等于6。如圖所示。

當(dāng)正六邊形ABCDEF滾動到位置1,2,3,4,5,6,7時,頂點A.B.C.D.E、F的縱坐標(biāo)為2。

位置1時,點A的橫坐標(biāo)也為2。

(45-2)÷6=7…1,

恰好滾動7周多一個,即與位置2頂點的縱坐標(biāo)相同,此點是點B。

會過點(45,2)的是點B。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于A(﹣1,0),B(4,0)與y軸交于點C(0,2),拋物線的對稱軸交x軸于點D.

(1)求拋物線的表達式;
(2)在拋物線的對稱軸是否存在點P,使△PCD是以CD為腰的等腰三角形,如果存在,求出P點的坐標(biāo),若不存在,請說明理由;
(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?并求出四邊形CDBF的最大面積及此時E點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線PD垂直平分⊙O的半徑OA于點B,PD交⊙O于點C、D,PE是⊙O的切線,E為切點,連結(jié)AE,交CD于點F.
(1)若⊙O的半徑為8,求CD的長;
(2)證明:PE=PF;
(3)若PF=13,sinA= ,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點A1,A2,A3,A4和C1,C2,C3,C4分別是ABCD的五等分點,點B1,B2和D1,D2分別是BC和DA的三等分點,已知四邊形A4B2C4D2的面積為2,則平行四邊形ABCD的面積為( )

A. 4 B. C. D. 30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)(a-b)2(a-b)3(b-a)5 (2)(a-b+c)3(b-a-c)5(a-b+c)6

(3)(b-a)m·(b-a)n-5·(a-b)5 (4)x·xm-1+x2·xm-2-3x3·xm-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有20箱橘子,以每箱25千克為標(biāo)準(zhǔn),超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:

(1)20箱橘子中,最重的一箱比最輕的一箱多重多少干克?

(2)與標(biāo)準(zhǔn)重量比較,20箱橘子總計超過或不足多少千克?

(3)若橘子每千克售價2.5元,則出售這20箱橘子可賣多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點C(0,4)與x軸交于點A、B,點B(4,0),拋物線的對稱軸為x=1.直線AD交拋物線于點D(2,m).

(1)求二次函數(shù)的解析式并寫出D點坐標(biāo);
(2)點E是BD的中點,點Q是線段AB上一動點,當(dāng)△QBE和△ABD相似時,求點Q的坐標(biāo);
(3)拋物線與y軸交于點C,直線AD與y軸交于點F,點M為拋物線對稱軸上的動點,點N在x軸上,當(dāng)四邊形CMNF周長取最小值時,求出滿足條件的點M和點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國著名數(shù)學(xué)家華羅庚曾經(jīng)說過,數(shù)形結(jié)合百般好,隔裂分家萬事非。數(shù)形結(jié)合的思想方法在數(shù)學(xué)中應(yīng)用極為廣泛.

觀察下列按照一定規(guī)律堆砌的鋼管的橫截面圖:

用含n的式子表示第n個圖的鋼管總數(shù).

分析思路

圖形規(guī)律中暗含數(shù)字規(guī)律,我們可以采用分步的方法,從圖形排列中找規(guī)律;把圖形看成幾個部分的組合,并保持結(jié)構(gòu),找到每一部分對應(yīng)的數(shù)字規(guī)律,進而找到整個圖形對應(yīng)的數(shù)字規(guī)律。

:要解決上面問題,我們不妨先從特例入手:(統(tǒng)一用S表示鋼管總數(shù))

解決問題

(1)如圖,如果把每個圖形按照它的行來分割觀察,你發(fā)現(xiàn)了這些鋼管的堆砌規(guī)律了嗎?n=1、n=2的情形那樣,在所給橫線上,請用數(shù)學(xué)算式表達你發(fā)現(xiàn)的規(guī)律.

S=1+2 S=2+3+4 _____________ ______________

(2)其實,對同一個圖形,我們的分析眼光可以是不同的。請你像(1)那樣保持結(jié)構(gòu)的、對每一個所給圖形添加分割線,提供與(1)不同的分割方式;并在所給橫線上,請用數(shù)學(xué)算式表達你發(fā)現(xiàn)的規(guī)律:

_______ ____________ _______________ _______________

(3)用含n的式子列式,并計算第n個圖的鋼管總數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx+b與x軸正半軸交于點A,與y軸負半軸交于點B,圓心P在x軸的正半軸上,已知AB=10,AP=

(1)求點P到直線AB的距離;

(2)求直線y=kx+b的解析式;

(3)在圖中存在點Q,使得BQO=90°,連接AQ,請求出AQ的最小值.

查看答案和解析>>

同步練習(xí)冊答案