【題目】在△ABC中,∠ACB=90°,AB=25,BC=15.
(1)如圖1,折疊△ABC使點A落在AC邊上的點D處,折痕交AC、AB分別于Q、H,若,則HQ= .
(2)如圖2,折疊△ABC使點A落在BC邊上的點M處,折痕交AC、AB分別于E、F.若FM∥A,求證:四邊形AEMF是菱形;
(3)在(1)(2)的條件下,線段CQ上是否存在點P,使得△CMP和△HQP相似?若存在,求出PQ的長;若不存在,請說明理由.
【答案】(1)HQ=5;(2)證明見解析;(3)PQ=或..
【解析】
(1)利用勾股定理求出AC,設HQ=x,根據S△ABC=9S△DHQ,構建方程即可解決問題;
(2)想辦法證明四邊相等即可解決問題;
(3)設AE=EM=FM=AF=4m,則BM=3m,FB=5m,構建方程求出m的值,分兩種情形分別求解即可解決問題;
(1)如圖1中,
在△ABC中,90°,AB=25,BC=15,
,設HQ=x,
故答案為:5.
(2)如圖2中,
由翻折不變可知:AE=EM,AF=FM,∠AFE=∠MFE
.
(3)如圖3中,
設AE=AE=FM=AF=4m,則BM=3m,FB=5m,
設PQ=x
當時,△HQP△MCP
解得:
當時,△HQP△PCM
解得:
經檢驗:是分式方程的解,且符合題意,
綜上所訴,滿足條件長QP的值為或者.
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E,連接BD.
(1)求證:DE是⊙O的切線;
(2)若BD=3,AD=4,則DE= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.
(1)求拋物線的解析式;
(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;
(3)如圖②,F是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2018年,國家衛(wèi)生健康委員會和國家教育部在全國開展了兒童青少年近視調查工作,調查數據顯示,全國兒童青少年近視過半.某校初三學習小組為了解本校學生對自己視力保護的重視程度,隨機在校內調查了部分學生,調查結果分為“非常重視”“重視”“比較重視”“不重視”四類,并將結果繪制成下面的兩幅不完整的統計圖:
根據圖中信息,解答下列問題:
(1)求本次調查的學生總人數,并補全條形統計圖;
(2)該校共有學生1000人,請你估計該校對視力保護“非常重視”的學生人數;
(3)對視力“非常重視”的4人有,兩名男生,,兩名女生,若從中隨機抽取兩人向全校作視力保護交流,請利用樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE,將△ADE沿AE對折到△AFE,延長EF交邊BC于點G,連接AG,CF,下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S=,其中正確的有( )個.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖象經過,兩點,與反比例函數的圖象在第一象限內的交點為.
求一次函數和反比例函數的表達式;
在x軸上是否存在點P,使?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線上部分點的橫坐標x與縱坐標y的對應值如下表
x | … | -2 | -1 | 0 | 1 | 2 | 3 | … |
y | … | -4 | 0 | 2 | 2 | 0 | -4 | … |
下列結論:①拋物線開口向下;②當時,y隨x的增大而減;③拋物線的對稱軸是直線;④函數的最大值為2.其中所有正確的結論為( )
A.①②③B.①③C.①③④D.①②③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com