如果ax2bxc0a0)的兩個(gè)根是x1,x2,那么x1x2__________x1x2__________。

 

答案:
解析:

;

 


提示:

根據(jù)一元二次方程根與系數(shù)的關(guān)系來做。

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:在一元二次方程ax2+bx+c=0(a≠0)中,如果b2-4ac≥0,記它的兩個(gè)根為x1,x2,由求根公式計(jì)算兩個(gè)根的和與積為x1+x2=-
b
a
,x1•x2=
c
a
,一元二次方程兩個(gè)根的和、兩個(gè)根的積是由方程的系數(shù)確定的,這就是一元二次方程根與系數(shù)的關(guān)系.根據(jù)這段材料解決下列問題:
(1)設(shè)方程2x2-4x-1=0的兩個(gè)根分別為x1,x2,則x1+x2=
2
2
,x1•x2=
-
1
2
-
1
2

(2)如果方程x2+bx-1=0的一個(gè)根是2+
3
,求方程的另一個(gè)根和實(shí)數(shù)b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:022

一元二次方程的根與系數(shù)的關(guān)系

如果ax2bxc0(a≠0)的兩個(gè)根是x1x2,那么x1x2___________,x1·x2___________.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

跳繩時(shí),繩甩到最高處時(shí)的形狀是拋物線.正在甩繩的甲、乙兩名同學(xué)拿繩的手間距AB為6米,到地面的距離AOBD均為0.9米,身高為1.4米的小麗站在距點(diǎn)O的水平距離為1米的點(diǎn)F處,繩子甩到最高處時(shí)剛好通過她的頭頂點(diǎn)E.以點(diǎn)O為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系, 設(shè)此拋物線的解析式為y=ax2bx+0.9.

(1)求該拋物線的解析式;

(2)如果小華站在OD之間,且離點(diǎn)O的距離為3米,當(dāng)繩子甩到最高處時(shí)剛好通過他的頭頂,請(qǐng)你算出小華的身高;

(3)如果身高為1.4米的小麗站在OD之間,且離點(diǎn)O的距離為t米, 繩子甩到最高處時(shí)超過她的頭頂,請(qǐng)結(jié)合圖像,寫出t的取值范圍     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c的頂點(diǎn)為P,對(duì)稱軸直線x=1與x軸交于點(diǎn)D,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中A(-1,0)、C(0,3).

1.求此拋物線的解析式

2.點(diǎn)E在線段BC上,若△DEB為等腰三角形,求點(diǎn)E的坐標(biāo)

3.點(diǎn)F、Q都在該拋物線上,若點(diǎn)C與點(diǎn)F關(guān)于直線x=1成軸對(duì)稱,連結(jié)BF、BQ,如果∠FBQ=45°,求點(diǎn)Q的坐標(biāo);

4.將△BOC繞著它的頂點(diǎn)B順時(shí)針在第一象限內(nèi)旋轉(zhuǎn),旋轉(zhuǎn)后的圖形為△BO'C',BO'與BP重合時(shí),則△BO'C'不在BP上的頂點(diǎn)C'的坐標(biāo)為    ▲    (直接寫出答案).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案