【題目】如圖,五邊形是邊長為的正五邊形,是正五邊形的外接圓,過點作的切線,與、的延長線交分別于點和,延長、相交于點,那么的長度是________.
【答案】
【解析】
先證明AG=AF,由SSS得到△OHD與△OED全等,得出∠ODH=∠ODE=54°,證出∠B=∠C=72°,設(shè)GB=xcm,由△DHB∽△GBD,利用相似三角形對應(yīng)邊成比例列出比例式,求出x的值,即可得出結(jié)果.
:∵五邊形DEFGH是正五邊形,
∴∠HDE=∠DEF=∠EFG=∠FGH=∠GHD=108°,
∴∠BHD=∠CED=∠AGF=∠AFG=72°,
∴AG=AF,
∴△AGF是等腰三角形;
連接DG,如圖所示:
∵BC是⊙O的切線,
∴OD⊥BC,
∴∠BFO=∠CFO=90°,
在△OHD與△OED中,,
∴△OHD≌△OED(SSS),
∴∠ODH=∠ODE=54°,
∴∠HDB=∠EDC=36°,
∴∠B=∠C=72°,
∴BD=DH=DE=DC=GF,
∴GF=BC,
∵∠B=∠AGF=72°,
∴FG∥BC,
∴四邊形FGDC是平行四邊形,
∴GD∥CA,
∵BD=CD,
∴AG=GB,
∴點G是線段AB的中點;
∵五邊形DEFGH是正五邊形,
∴BD=DH=GH=2,
設(shè)GB=x,
∵∠BDH=∠BGD,∠B=∠B,
∴△DHB∽△GBD,
∴,即,
整理得:x2-2x-4=0,
解得:x=1±(負值舍去),
∴AG=GB=1+,
∴AB=2+2;
故答案為:2+2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點C與某建筑物底端B相距306米(點C與點B在同一水平面上),某同學從點C出發(fā),沿同一剖面的斜坡CD行走195米至坡頂D處,斜坡CD的坡度(或坡比)i=1:2.4,在D處測得該建筑物頂端A的俯視角為20°,則建筑物AB的高度約為(精確到0.1米,參考數(shù)據(jù):sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( 。
A. 29.1米 B. 31.9米 C. 45.9米 D. 95.9米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,按以下步驟作圖:①以為圓心,以長為半徑作弧,交于點;②分別以、為圓心,以大于的長為半徑作弧,兩弧相交于點;③作射線,交邊于點.若,,則的長為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是的內(nèi)心,過點作,與、分別交于點、,則( )
A. EF>AE+CF B. EF<AE+CF C. EF=AE+BF D. EF≤AE+CF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017重慶A卷第11題)如圖,小王在長江邊某瞭望臺D處,測得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長BC=10米,則此時AB的長約為( 。▍⒖紨(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).
A. 5.1米 B. 6.3米 C. 7.1米 D. 9.2米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一勘測人員從點出發(fā),沿坡角為的坡面以千米/時的速度行至點,用了分鐘,然后沿坡角為的坡面以千米/時的速度到達山頂點,用了分鐘.求山高(即的長度)及、兩點的水平距離(即的長度)(精確到千米).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com