【題目】今年,我省啟動了“愛護眼睛保護視力”儀式,某小學(xué)為了了解各年級戴近視鏡的情況,對一到六年級近視的學(xué)生進行了統(tǒng)計,得到每個年紀(jì)的近視的兒童人數(shù)分別為20,30,20,34,36,40,對于這組數(shù)據(jù),下列說法錯誤的是(
A.平均數(shù)是30
B.眾數(shù)是20
C.中位數(shù)是34
D.方差是

【答案】C
【解析】解:A、平均數(shù)是:(20+30+20+34+36+40)÷6=30,故本選項正確; B、20出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是20,故本選項正確;
C、把這組數(shù)據(jù)從小到大排列為20,20,30,34,36,40,
最中間的數(shù)是(30+34)÷2=32,則中位數(shù)是32,故本選項錯誤;
D、方差是: [2(20﹣30)2+(30﹣30)2+(34﹣30)2+(36﹣30)2+(40﹣30)2]= ,故本選項正確.
則說法錯誤的是C;
故選C.
【考點精析】本題主要考查了算術(shù)平均數(shù)和中位數(shù)、眾數(shù)的相關(guān)知識點,需要掌握總數(shù)量÷總份數(shù)=平均數(shù).解題關(guān)鍵是根據(jù)已知條件確定總數(shù)量以及與它相對應(yīng)的總份數(shù);中位數(shù)是唯一的,僅與數(shù)據(jù)的排列位置有關(guān),它不能充分利用所有數(shù)據(jù);眾數(shù)可能一個,也可能多個,它一定是這組數(shù)據(jù)中的數(shù)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B分別在反比例函數(shù)y=(x>0)、y=(x>0)的圖象上,且∠AOB=90°,B=30°,求y的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+4的圖像與x軸交于兩點A、B,與y軸交于點C,且A(﹣1,0)、B(4,0)

(1)求此二次函數(shù)的表達式
(2)如圖1,拋物線的對稱軸m與x軸交于點E,CD⊥m,垂足為D,點F(﹣ ,0),動點N在線段DE上運動,連接CF、CN、FN,若以點C、D、N為頂點的三角形與△FEN相似,求點N的坐標(biāo)
(3)如圖2,點M在拋物線上,且點M的橫坐標(biāo)是1,點P為拋物線上一動點,若∠PMA=45°,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,M,N分別是AD,BC的中點,∠AND=90°,連接CM交DN于點O.
(1)求證:△ABN≌△CDM;
(2)連接MN,求證四邊形MNCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DBC的中點,過D點的直線GFACF,交AC的平行線BGG點,DE⊥DF,交AB于點E,連結(jié)EG、EF

1)求證:BGCF

2)請你判斷BE+CFEF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個工程隊計劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務(wù)所需天數(shù)是甲工程隊單獨完成修路任務(wù)所需天數(shù)的1.5倍

(1)求甲、乙兩個工程隊每天各修路多少千米?

(2)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過5.2萬元,甲工程隊至少修路多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB是⊙O的直徑,弦CD垂直于AB交于點E,∠COB=60°,CD=2 ,則陰影部分的面積為(
A.
B.
C.π
D.2π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB,以O為圓心,以任意長為半徑作弧,分別交OA,OBFE兩點,再分別以EF為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線OP,過點FFDOBOP于點D.

(1)若∠OFD=116°,求∠DOB的度數(shù);

(2)FMOD,垂足為M,求證:△FMO≌△FMD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面文字,根據(jù)所給信息解答下面問題:把幾個數(shù)用大括號括起來,中間用逗號隔開,其中大括號內(nèi)的數(shù)稱其為集合的元素,如:{3,4},3和4是集合{3,4}的元素。如果一個集合滿足:只要其中有一個元素a,使得﹣2a+4也是這個集合的元素,那么這樣的集合我們稱為條件集合。例如:⑴{3,﹣2},因為﹣2×3+4=﹣2,﹣2恰好是這個集合的元素,所以{3,﹣2}是條件集合。⑵{﹣2,9,8},因為﹣2×(﹣2)+4=8,8恰好是這個集合的元素,所以{﹣2,9,8}是條件集合.

(1)集合{﹣5,14}是否是條件集合?

(2)集合是否是條件集合?

(3)若集合{8,n}和{m}都是條件集合.求m、n的值.

查看答案和解析>>

同步練習(xí)冊答案