【題目】如圖,在Rt△ABC中,,角平分線交BC于O,以OB為半徑作⊙O.(1)判定直線AC是否是⊙O的切線,并說明理由;
(2)連接AO交⊙O于點E,其延長線交⊙O于點D,,求的值;
(3)在(2)的條件下,設(shè)的半徑為3,求AC的長.
科目:初中數(shù)學 來源: 題型:
【題目】已知點 C、D是線段AB上兩點(不與端點A、B重合),點A、B、C、D四點組成的所有線段的長度都是正整數(shù),且總和為29,則線段AB的長度為__________________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線與軸交于A、B兩點,點P在函數(shù)的圖象上,若△PAB為直角三角形,則滿足條件的點P的個數(shù)為( ).
A. 2個 B. 3個 C. 4個 D. 6個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算題
(1)30-(-12)-(-25)-18+(-10)
(2) (-+-).
(3)-52÷(-3)2×(-5)3÷[-(-5)2]
(4)(-2+3)-(2-)+6
(5)-[(-)+4]-
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C,AB=10cm,BC=8cm,E為AB的中點,點P在線段BC上以3cm/s的速度由點B向點C運動;同時,點Q在線段CA上由點C向點A運動,當點Q的速度為多少時,能夠使△BPE和△CQP全等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC和∠ACB的平分線交于點O.
(1) 結(jié)合圖形,請你寫出你認為正確的結(jié)論;
(2) 過O作EF∥BC交AB于E,交AC于F. 請你寫出圖中所有等腰三角形,并探究EF、BE、FC之間的關(guān)系;
(3) 若AB≠AC,其他條件不變,圖中還有等腰三角形嗎?若有,請寫出所有的等腰三角形,若沒有,請說明理由;線段EF、BE、FC之間,上面探究的結(jié)論是否還成立?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,BD是等邊△ABC一邊上的高,延長BC至E,使CE=CD.
(1)試比較BD與DE的大小關(guān)系,并說明理由;
(2)若將BD改為△ABC的角平分線或中線,能否得出同樣的結(jié)論?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下列生活、生產(chǎn)現(xiàn)象中,可以用基本事實“兩點確定一條直線”來解釋的是( 。
①用兩顆釘子就可以把木條固定在墻上;②把筆尖看成一個點,當這個點運動時便得到一條線;③把彎曲的公路改直,就能縮短路程;④植樹時,只要栽下兩棵樹,就可以把同一行樹栽在同一條直線上.
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+1交y軸于點A,交x軸正半軸于點B(4,0) ,與過A點的直線相交于另一點D(3,) ,過點D作DC⊥x軸,垂足為C.
(1)求拋物線的表達式;
(2)點P在線段OC上(不與點O,C重合),過P作PN⊥x軸,交直線AD于M,交拋物線于點N,連接CM,求△PCM 面積的最大值;
(3)若P 是x 軸正半軸上的一動點,設(shè)OP 的長為t.是否存在t,使以點M,C,D,N 為頂點的四邊形是平行四邊形?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com