【題目】我市某工藝廠為配合倫敦奧運,設(shè)計了一款成本為20元/件的工藝品投入市場進(jìn)行試銷,得到如下數(shù)據(jù):
銷售單價x (元/件) | …… | 30 | 40 | 50 | 60 | …… |
每天銷售量y(件) | …… | 500 | 400 | 300 | 200 | …… |
(1)把上表中x、y的各組對應(yīng)值作為點的坐標(biāo),在右面的平面直角坐標(biāo)系中描出相應(yīng)的點,猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤為9000元?
(利潤=銷售總價-成本總價)
(3)根據(jù)要求,試銷該工藝品每天獲得的利潤不低于8000元,每天銷售量不低于350件,試確定銷售單價x(元/件)的取值范圍,并求出工藝廠試銷該工藝品每天獲得的最大利潤.
【答案】(1)作圖見解析,y=-10x+800(2)50(3)45元/件,8750元
【解析】試題分析:(1)描點,由圖可猜想y與x是一次函數(shù)關(guān)系,任選兩點求表達(dá)式,再驗證猜想的正確性;(2)利潤=銷售總價-成本總價=單件利潤×銷售量.據(jù)此得表達(dá)式,運用性質(zhì)求最值;(3)根據(jù)自變量的取值范圍結(jié)合函數(shù)的取值范圍內(nèi)的增減性,可得出函數(shù)的最值.
試題解析:
(1)描4個點略,由圖可猜想y是x的一次函數(shù),設(shè)y=kx+b,
∵圖象過(30,500),(40,400)這兩點,
∴y=-10x+800.
(2)由(x-20)(-10x+800) =9000,
∴x1=x2=50.
(3)設(shè)該工藝廠試銷工藝品每天獲得的利潤是W元.
由-10(x-50)2+9000≥8000,
得40≤x≤60,
由-10x+800≥350,
得x≤45
∴40≤x≤45,
∴W=(x-20)(-10x+800)=-10x2+1000x-16000=-10(x-50)2+9000.
當(dāng)x≤45時,W值隨x的增大而增大,
∴當(dāng)銷售單價定為45元/件時,工藝廠每天獲得的利潤最大,最大值為8750元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮想知道學(xué)校旗桿的高度,他發(fā)現(xiàn)旗桿上的繩子從頂端垂到地面還多2米,當(dāng)他把繩子的下端拉開8米后,下端剛好接觸地面,那么學(xué)校旗桿的高度為( )
A. 8米B. 10米C. 15米D. 17米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店第一次用600元購進(jìn)2B鉛筆若干支,第二次又用600元購進(jìn)該款鉛筆,但這次每支的進(jìn)價是第一次進(jìn)價的倍,購進(jìn)數(shù)量比第一次少了30支.
(1)求第一次每支鉛筆的進(jìn)價是多少元?
(2)若要求這兩次購進(jìn)的鉛筆按同一價格全部銷售完畢后獲利不低于420元,問每支售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.
(1)求點B的坐標(biāo);
(2)求證:四邊形ABCE是平行四邊形;
(3)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年,全年國內(nèi)生產(chǎn)總值達(dá)到900300億元,將這個數(shù)據(jù)用科學(xué)記數(shù)法表示為_____元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com