【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
【答案】(1)y=﹣,y=﹣2x+12(2)S△CDE=140;(3)x≥10,或﹣4≤x<0
【解析】
(1)根據(jù)三角形相似,可求出點坐標,可得一次函數(shù)和反比例函數(shù)解析式;
(2)聯(lián)立解析式,可求交點坐標;
(3)根據(jù)數(shù)形結合,將不等式轉化為一次函數(shù)和反比例函數(shù)圖象關系.
(1)由已知,OA=6,OB=12,OD=4
∵CD⊥x軸
∴OB∥CD
∴△ABO∽△ACD
∴
∴
∴CD=20
∴點C坐標為(﹣4,20)
∴n=xy=﹣80
∴反比例函數(shù)解析式為:y=﹣
把點A(6,0),B(0,12)代入y=kx+b得:
解得:
∴一次函數(shù)解析式為:y=﹣2x+12
(2)當﹣=﹣2x+12時,解得
x1=10,x2=﹣4
當x=10時,y=﹣8
∴點E坐標為(10,﹣8)
∴S△CDE=S△CDA+S△EDA=
(3)不等式kx+b≤,從函數(shù)圖象上看,表示一次函數(shù)圖象不低于反比例函數(shù)圖象
∴由圖象得,x≥10,或﹣4≤x<0
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在小正方形的邊長均為l的方格紙中,有線段AB,BC.點A,B,C均在小正方形的頂點上.
(1)在圖1中畫出四邊形ABCD,四邊形ABCD是軸對稱圖形,點D在小正方形的項點上:
(2)在圖2中畫四邊形ABCE,四邊形ABCE不是軸對稱圖形,點E在小正方形的項點上,∠AEC=90°,EC>EA;直接寫出四邊形ABCE的面積為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】茶葉是安徽省主要經濟作物之一,2020年新茶上市期間,某茶廠為獲得最大利益,根據(jù)市場行情,把新茶價格定為400元/kg,并根據(jù)歷年的相關數(shù)據(jù)整理出第x天(1≤x≤15,且x為整數(shù))制茶成本(含采摘和加工)和制茶量的相關信息如下表.假定該茶廠每天制作和銷售的新茶沒有損失,且能在當天全部售出(當天收入=日銷售額-日制茶成本)
制茶成本(元/kg) | 150+10x |
制茶量(kg) | 40+4x |
(1)求出該茶廠第10天的收入;
(2)設該茶廠第x天的收入為y(元).試求出y與x之間的函數(shù)關系式,并求出y的最大值及此時x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖所示直線y=kx+2(k≠0)與反比例函數(shù)y=(m≠0)分別交于點P,與y軸、x軸分別交于點A和點B,且cos∠ABO=,過P點作x軸的垂線交于點C,連接AC,
(1)求一次函數(shù)的解析式.
(2)若AC是△PCB的中線,求反比例函數(shù)的關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖等邊的邊長為,點,點同時從點出發(fā),點沿以的速度向點運動,點沿以的速度也向點運動,直到到達點時兩點都停止運動,若的面積為,點的運動時間為,則下列最能反映與之間函數(shù)關系的圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解朝陽社區(qū)歲居民最喜歡的支付方式,某興趣小組對社區(qū)內該年齡段的部分居民展開了隨機問卷調查(每人只能選擇其中一項),并將調查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:
(1)求參與問卷調查的總人數(shù).
(2)補全條形統(tǒng)計圖.
(3)該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校九年級學生的體質健康狀況,隨機抽取了該校九年級學生的10%進行測試,將這些學生的測試成績(x)分為四個等級:優(yōu)秀;良好;及格;不及格,并繪制成以下兩幅統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)在抽取的學生中不及格人數(shù)所占的百分比是______;
(2)計算所抽取學生測試成績的平均分;
(3)若不及格學生的人數(shù)為2人,請估算出該校九年級學生中優(yōu)秀等級的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過點(﹣2,0),對稱軸為直x=1線,下列結論中:①abc>0;②若A(x1,m),B(x2,m)是拋物線上的兩點,當x=x1+x2時,y=c;③若方程a(x+2)(4﹣x)=﹣2的兩根為x1,x2,且x1<x2,則﹣2<x1<x2<4;④(a+c)2>b2;一定正確的是______(填序號即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解不等式組
請結合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得______________________;
(Ⅱ)解不等式②,得____________________;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為_______________________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com