【題目】如圖,在△ABC中,AB=AC=11,BAC=120°,AD是△ABC的中線(xiàn),AE是∠BAD的角平分線(xiàn),DFABAE的延長(zhǎng)線(xiàn)于點(diǎn)E,則DF的長(zhǎng)為(

A. 4.5 B. 5 C. 5.5 D. 6

【答案】C

【解析】

根據(jù)等腰三角形三線(xiàn)合一的性質(zhì)可得ADBC,BAD=CAD,再求出∠DAE=EAB=30°,然后根據(jù)平行線(xiàn)的性質(zhì)求出∠F=BAE=30°,從而得到∠DAE=F,再根據(jù)等角對(duì)等邊求出AD=DF,然后求出∠B=30°,根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半解答.

解:∵AB=AC,ADABC的中線(xiàn),

ADBC,BAD=CAD=BAC=×120°=60°,

AE是∠BAD的角平分線(xiàn),

∴∠DAE=EAB=BAD=×60°=30°,

DFAB,

∴∠F=BAE=30°,

∴∠DAE=F=30°,

AD=DF,

∵∠B=90°-60°=30°,

AD=AB=×11=5.5,

DF=5.5.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】11·湖州)(本小題10分)

如圖,已知E、F分別是□ABCD的邊BCAD上的點(diǎn),且BE=DF。

求證:四邊形AECF是平行四邊形;

BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

1)(﹣7)﹣(+5+(﹣4)﹣(﹣10);

2.

3)(﹣24×1+);

436÷(﹣32×1+(﹣13+(﹣12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O的直徑20,OP長(zhǎng)為8,則過(guò)P的弦中,弦長(zhǎng)為整數(shù)的弦共有( )條.

A.1 B.9 C.17 D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)k,m分別為何值時(shí),關(guān)于x,y的方程組至少有一組解?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)的邊上,點(diǎn)內(nèi)部,,

給出下列結(jié)論:①;②;③;④.其中正確的有(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,、分別垂直平分,交、兩點(diǎn),相交于點(diǎn).

(1)的周長(zhǎng)為15 cm,求的長(zhǎng).

(2),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的是某風(fēng)景區(qū)的旅游路線(xiàn)示意圖,其中B,C,D為風(fēng)景點(diǎn),E為兩條路的交叉點(diǎn),圖中數(shù)據(jù)為兩相應(yīng)點(diǎn)間的距離(單位:千米).一位游客從A處出發(fā),以2千米/時(shí)的速度步行游覽,每個(gè)景點(diǎn)的逗留時(shí)間均為小時(shí).

(1)當(dāng)他沿著路線(xiàn)ADCEA游覽回到A處時(shí),共用了4小時(shí),求CE的長(zhǎng);

(2)若此學(xué)生打算從A處出發(fā),步行速度與景點(diǎn)的逗留時(shí)間保持不變,且在最短時(shí)間內(nèi)看完三個(gè)景點(diǎn)返回到A處,請(qǐng)你為他設(shè)計(jì)一條步行路線(xiàn),說(shuō)明這樣設(shè)計(jì)的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】7分)(2015黃石)如圖,⊙O的直徑AB=4∠ABC=30°,BC⊙OD,DBC的中點(diǎn).

1)求BC的長(zhǎng);

2)過(guò)點(diǎn)DDE⊥AC,垂足為E,求證:直線(xiàn)DE⊙O的切線(xiàn).

查看答案和解析>>

同步練習(xí)冊(cè)答案