【題目】如圖,甲乙兩數(shù)學(xué)興趣小組測(cè)量出CD的高度,甲小組在地面A處測(cè)量,乙小組在上坡B處測(cè)量,AB=200m,甲小組測(cè)得山頂D的仰角為45°,山坡B處的仰角為30°;乙小組測(cè)得山頂D的仰角為58°,求山CD的高度(結(jié)果保留一位小數(shù))
參考數(shù)據(jù):tan58°≈1.60, ≈1.732,供選用.

【答案】解:過B作BF⊥AC于F,

在Rt△AFB中,

∵AB=200米,∠BAF=30°,

∴BF= AB= ×200=100(米),

AF=ABcos30°=100 (米),

∵BF⊥AC,BE⊥DC,

∴四邊形BFCE是矩形,

∴EC=BF=100米,

設(shè)BE=x米,則FC=x米,

在Rt△DBE中,

∵∠DBE=58°,

∴DE=tan58°BE=1.6x(米),

∵∠DAC=45°,∠C=90°,

∴∠ADC=45°,

∴AC=DC,

∵AC=AF+FC=(100 +x)米,

DC=DE+EC=(1.6x+100)米,

解得:x=122,

∴DC=DE+EC=1.6×122+100=295.2(米);

答:山的高度BC約為295.2米.


【解析】根據(jù)解直角三角形可得,在Rt△AFB中,由AB=200米,∠BAF=30°,得到BF=100米,AF=100 米,因?yàn)锽F⊥AC,BE⊥DC,得到四邊形BFCE是矩形,得到EC=BF=100米,在Rt△DBE中,由乙小組測(cè)得山頂D的仰角為58°,得到DE=1.6x米,由AC=DC,列出方程,解得x=122,求出山的高度.
【考點(diǎn)精析】關(guān)于本題考查的關(guān)于仰角俯角問題,需要了解仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖1ADBC的一張紙條,按圖1→2→3,把這一紙條先沿EF折疊并壓平,再沿BF折疊并壓平,若圖3中∠CFE=18°,則圖2中∠AEF的度數(shù)為(  。

A.120°B.108°C.126°D.114°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AMBN,∠A=80°,點(diǎn)P是射線AM上的動(dòng)點(diǎn)(與A不重合),BCBD分別平分∠ABP和∠PBN,交射線AM于點(diǎn)C、D

1)求∠CBD的度數(shù);

2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB∶∠ADB的度數(shù)比值是否隨之發(fā)生變化?若不變,請(qǐng)求出這個(gè)比值;若變化,請(qǐng)找出變化規(guī)律.

3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=ABD時(shí),求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=9,AD=6,∠ADC的平分線交AB于點(diǎn)E,交CB的延長線于點(diǎn)F,AG⊥DE,垂足為G.若AG=4 ,則△BEF的面積是( )

A.
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E在BC上,四邊形EFGB也是正方形,以B為圓心,BA長為半徑畫 ,連結(jié)AF,CF,則圖中陰影部分面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC在網(wǎng)格中(網(wǎng)格中每個(gè)小正方形的邊長均為1)依次進(jìn)行位似變換、軸對(duì)稱變換和平移變換后得到△A3B3C3

(1)△ABC與△A1B1C1的位似比等于;
(2)在網(wǎng)格中畫出△A1B1C1關(guān)于y軸的軸對(duì)稱圖形△A2B2C2;
(3)請(qǐng)寫出△A3B3C3是由△A2B2C2怎樣平移得到的?
(4)設(shè)點(diǎn)P(x,y)為△ABC內(nèi)一點(diǎn),依次經(jīng)過上述三次變換后,點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師利用休息時(shí)間組織學(xué)生測(cè)量山坡上一棵大樹CD的高度,如圖,山坡與水平面成30°角(即∠MAN=30°),在山坡底部A處測(cè)得大樹頂端點(diǎn)C的仰角為45°,沿坡面前進(jìn)20米,到達(dá)B處,又測(cè)得樹頂端點(diǎn)C的仰角為60°(圖中各點(diǎn)均在同一平面內(nèi)),求這棵大樹CD的高度(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于 x 的方程 2x2+kx﹣1=0.

(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

(2)若方程的一個(gè)根是﹣1,求另一個(gè)根及 k 值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).

(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EPCD交于點(diǎn)G,點(diǎn)HMN上一點(diǎn),且GH⊥EG,求證:PF∥GH;

(3)如圖3,在(2)的條件下,連接PH,KGH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請(qǐng)求出其值;若變化,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案