如圖,Rt△ABC中,AC=BC=8,∠ACB=90º,直角邊AC在x軸上,B點(diǎn)在第二象限,A(2,0),AB交y軸于E,將紙片過(guò)E點(diǎn)折疊使BE與EA所在直線(xiàn)重合,得到折痕EF(F在x軸上),再展開(kāi)還原沿EF剪開(kāi)得到四邊形BCFE,然后把四邊形BCFE從E點(diǎn)開(kāi)始沿射線(xiàn)EA平移,至B點(diǎn)到達(dá)A點(diǎn)停止.設(shè)平移時(shí)間為t(s),移動(dòng)速度為每秒1個(gè)單位長(zhǎng)度,平移中四邊形B1C1F1E1與△AEF重疊的面積為S.
(1)求折痕EF的長(zhǎng);
(2)直接寫(xiě)出S與t的函數(shù)關(guān)系式及自變量t的取 值范圍.
(3)若四邊形BCFE平移時(shí),另有一動(dòng)點(diǎn)H與四邊形BCFE同時(shí)出發(fā),以每秒個(gè)單位長(zhǎng)度從點(diǎn)A沿射線(xiàn)AC運(yùn)動(dòng),試求出當(dāng)t為何值時(shí),△HE1E為等腰三角形?
(1)(2) ()(3)或2
解析試題分析:1)∵折疊后BE與EA所在直線(xiàn)重合
∴EF⊥EA
又Rt△ABC中AC=BC
∴∠CAB=45°
∴EF=EA
∵A(2,0)
∴OA=OE=2 , AE=
∴折痕EF=
(2)
()
S=4 ()
()
()
(3)
=
當(dāng)E1E=EE1時(shí)
4t2-8
∴t=
當(dāng)E1E=EH時(shí),
當(dāng)E1H=EH時(shí)
或0
綜上:或2
考點(diǎn):二次函數(shù)的綜合題
點(diǎn)評(píng):此題將用待定系數(shù)法求二次函數(shù)解析式、動(dòng)點(diǎn)問(wèn)題和最小值問(wèn)題相結(jié)合,有較大的思維跳躍,考查了同學(xué)們的應(yīng)變能力和綜合思維能力,是一道好題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com