精英家教網(wǎng)如圖,線段AB的端點(diǎn)是4×5的正方形網(wǎng)格的格點(diǎn),若再在網(wǎng)格的格點(diǎn)中取一點(diǎn)C,使△ABC成為等腰三角形,則符合條件的點(diǎn)C的個(gè)數(shù)是( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)
分析:利用等腰三角形的定義,并結(jié)合勾股定理,找到一點(diǎn),使其與AB組成的三角形中有兩條邊相等,就可判斷解答.
解答:精英家教網(wǎng)解:如圖,在△ABC中,AC=
32+12
=
10
,
BC=
32+12
=
10
,即,AC=AB,
所以,△ABC為等腰三角形;
同理,可取得點(diǎn)D、點(diǎn)E、點(diǎn)F,
在△ABD、△ABE、△ABF中,
AB=BD=
42+22
=2
5
,
AB=AE=
42+22
=2
5

AF=5,BF=
42+32
=5,
所以,△ABD、△ABE、△ABF為等腰三角形.
故選D.
點(diǎn)評(píng):本題考查了等腰三角形的判定;利用等腰三角形的判定來解決特殊的問題,其關(guān)鍵是根據(jù)題意,畫出符合實(shí)際條件的圖形,再利用數(shù)學(xué)知識(shí)來求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,線段AB的端點(diǎn)在邊長(zhǎng)為1的小正方形網(wǎng)格的格點(diǎn)上,現(xiàn)將線段AB繞點(diǎn)A按逆時(shí)針方精英家教網(wǎng)向旋轉(zhuǎn)90°得到線段AC.
(1)請(qǐng)你在所給的網(wǎng)格中畫出線段AC及點(diǎn)B經(jīng)過的路徑;
(2)若將此網(wǎng)格放在一平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(1,3),點(diǎn)B的坐標(biāo)為(-2,-1),則點(diǎn)C的坐標(biāo)為
 
;
(3)線段AB在旋轉(zhuǎn)到線段AC的過程中,線段AB掃過的區(qū)域記為圖形T,若將圖形T圍成一個(gè)幾何體的側(cè)面,求該幾何體底面圓的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

33、如圖,線段AB的端點(diǎn)坐標(biāo)為A(2,-1),B(3,1).試畫出AB向左平移4個(gè)單位長(zhǎng)度的圖形,寫出A、B對(duì)應(yīng)點(diǎn)C、D的坐標(biāo),并判斷A、B、C、D四點(diǎn)組成的四邊形的形狀.(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:線段AB的端點(diǎn)在邊長(zhǎng)為1的小正方形網(wǎng)格的格點(diǎn)上,現(xiàn)將線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°得到線段AC.
(1)請(qǐng)你在所給的網(wǎng)格中畫出線段AC及點(diǎn)B經(jīng)過的路徑;
(2)若將此網(wǎng)格放在一平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(1,3),則點(diǎn)C的坐標(biāo)為
 

(3)線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°得到線段AC,若有一張與線段AB掃過的區(qū)域形狀、大小相同的紙片,將它圍成一個(gè)幾何體的側(cè)面,則該幾何體底面圓的半徑為
 

(4)在圖中確定格點(diǎn)E,并畫出一個(gè)以A、B、C、E為頂點(diǎn)的四邊形,使其為中心對(duì)稱圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•金東區(qū)模擬)如圖,線段AB的端點(diǎn)在邊長(zhǎng)為1的小正方形網(wǎng)格的格點(diǎn)上,現(xiàn)將線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°.得到線段AC.
(1)若將此網(wǎng)格放在一平面直角坐標(biāo)系中,已知點(diǎn)A(1,3),點(diǎn)B(-2,-1〕,直接寫出點(diǎn)C的坐標(biāo)
(2)線段AB在旋轉(zhuǎn)到線段AC的過程中,求線段AB掃過的區(qū)域的面積;
(3)若利用(2)中得到的區(qū)域紙片,將它圍成一個(gè)幾何體的側(cè)面,求該幾何體底面圓的半徑長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案