【題目】下面的四個圖案中,既可用旋轉(zhuǎn)來分析整個圖案的形成過程,又可用軸對稱來分析整個圖案的形成過程的圖案有( )

A.4個 B.3個 C.2個 D.1個

【答案】A

【解析】

試題分析:根據(jù)旋轉(zhuǎn)、軸對稱的定義來分析.

圖形的旋轉(zhuǎn)是圖形上的每一點在平面上繞某個固定點旋轉(zhuǎn)固定角度的位置移動;

軸對稱是指如果一個圖形沿一條直線折疊,直線兩側(cè)的圖形能夠互相重合,就是軸對稱.

解:圖形1可以旋轉(zhuǎn)90°得到,也可以經(jīng)過軸對稱,沿一條直線對折,能夠完全重合;

圖形2可以旋轉(zhuǎn)180°得到,也可以經(jīng)過軸對稱,沿一條直線對折,能夠完全重合;

圖形3可以旋轉(zhuǎn)180°得到,也可以經(jīng)過軸對稱,沿一條直線對折,能夠完全重合;

圖形4可以旋轉(zhuǎn)90°得到,也可以經(jīng)過軸對稱,沿一條直線對折,能夠完全重合.

故既可用旋轉(zhuǎn)來分析整個圖案的形成過程,又可用軸對稱來分析整個圖案的形成過程的圖案有4個.

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖所示直線y=kx+2(k0)與反比例函數(shù)y=(m0)分別交于點P,與y軸、x軸分別交于點A和點B,且cosABO=,過P點作x軸的垂線交于點C,連接AC,

(1)求一次函數(shù)的解析式.

(2)若AC是△PCB的中線,求反比例函數(shù)的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的半徑均為

請在圖中畫出弦,,使圖為軸對稱圖形而不是中心對稱圖形;請在圖中畫出弦,,使圖仍為中心對稱圖形;

如圖,在中,,且交于點,夾角為銳角.求四邊形的面積(用含,的式子表示);

若線段,的兩條弦,且,你認為在以點,,為頂點的四邊形中,是否存在面積最大的四邊形?請利用圖說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖是一座拋物線形拱橋,P 處有一照明燈,水面OA 4 m.從O,A 兩處觀測P ,仰角分別為αβ,tanα ,tanβ.O 為原點,OA 所在直線為x 軸建立平面直角坐標系.

(1)求點P的坐標;

(2)若水面上升1 m,則水面寬多少米 1.41,結(jié)果精確到0.1 m)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在等邊三角形中,邊上的動點,以為一邊,向上作等邊三角形,連接

1全等嗎?請說明理由;

2)試說明:;

3)如圖(2),將動點運動到邊的延長線上,所作三角形仍為等邊三角形,請問是否仍有?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DBC的中點,DEAB,DFAC,垂足分別是E、FBE=CF.

1)圖中共有_________對全等三角形.

2)求證:AD是△ABC的角平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:

1)(a2b2ab2b3)÷b﹣(a+b)(ab),其中a1b=﹣2

2)先化簡(1+)÷,再從﹣1,01,23中選取一個合適的數(shù)作為x的值代入求值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一水壩的橫斷面是梯形,下底,斜坡的坡度為,另一腰與下底的交角為,且長為,求它的上底的長(精確到)(.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】作圖題:(要求保留作圖痕跡,不寫作法)

1)作△ABCBC邊上的垂直平分線EF(交AC于點E,交BC于點F);

2)連結(jié)BE,若AC=10,AB=6,求△ABE的周長.

查看答案和解析>>

同步練習冊答案