【題目】如圖,在⊙O中,直徑AB⊥CD,垂足為E,點(diǎn)M在OC上,AM的延長線交⊙O于點(diǎn)G,交過C的直線于F,∠1=∠2,連結(jié)CB與DG交于點(diǎn)N.
(1)求證:CF是⊙O的切線;
(2)求證:△ACM∽△DCN;
(3)若點(diǎn)M是CO的中點(diǎn),⊙O的半徑為4,cos∠BOC=,求BN的長.
【答案】(1)見解析(2)見解析(3)
【解析】解:(1)證明:∵△BCO中,BO=CO,∴∠B=∠BCO。
在Rt△BCE中,∠2+∠B=900,∠1=∠2,∴∠1+∠BCO=900,即∠FCO=90°。
∵OC是⊙O的半徑,∴CF是⊙O的切線。
(2)證明:∵AB是⊙O直徑,∴∠ACB=∠FCO=900。
∴∠ACB-∠BCO=∠FCO-∠BCO,即∠3=∠1。
∴∠3=∠2。
∵∠4=∠D,∴△ACM∽△DCN。
(3)∵⊙O的半徑為4,即AO=CO=BO=4,
在Rt△COE中,cos∠BOC=,
∴OE=COcos∠BOC=4×=1。∴BE=3,AE=5。
由勾股定理可得:,
。
∵AB是⊙O直徑,AB⊥CD,∴由垂徑定理得:CD=2CE=。
∵點(diǎn)M是CO的中點(diǎn),∴CM=CO=×4=2
∵△ACM∽△DCN,∴,即。
∴。
(1)根據(jù)切線的判定定理得出∠1+∠BCO=900,即可得出答案;
(2)利用已知得出∠3=∠2,∠4=∠D,再利用相似三角形的判定方法得出即可。
(3)根據(jù)已知得出OE的長,從而利用勾股定理得出EC,AC,BC的長,即可得出CD,利用(2)中相似三角形的性質(zhì)得出NB的長即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圖1至圖3中,的直徑,切于點(diǎn),,連接交于點(diǎn),連接,是線段上一點(diǎn),連接.
(1)如圖1,當(dāng)點(diǎn),的距離最小時(shí),求的長;
(2)如圖2,若射線過圓心,交于點(diǎn),,求的值;
(3)如圖3,作于點(diǎn),連接,直接寫出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)發(fā)現(xiàn)
如圖1,△ABC和△ADE均為等邊三角形,點(diǎn)D在BC邊上,連接CE.
填空:
①∠DCE的度數(shù)是 ;
②線段CA、CE、CD之間的數(shù)量關(guān)系是 .
(2)探究
如圖2,△ABC和△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)D在BC邊上,連接CE.請(qǐng)判斷∠DCE的度數(shù)及線段CA、CE、CD之間的數(shù)量關(guān)系,并說明理由.
(3)應(yīng)用
如圖3,在Rt△ABC中,∠A=90°,AC=4,AB=6.若點(diǎn)D滿足DB=DC,且∠BDC=90°,請(qǐng)直接寫出DA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年注定是不平凡的一年,新年伊始,一場突如其來的疫情席卷全國,全國人民萬眾一心,抗戰(zhàn)疫情.為了早日取得抗疫的勝利,各級(jí)政府、各大新聞媒體都加大了對(duì)防疫知識(shí)的宣傳.某校為了了解初一年級(jí)共480名同學(xué)對(duì)防疫知識(shí)的掌握情況,對(duì)他們進(jìn)行了防疫知識(shí)測試.現(xiàn)隨機(jī)抽取甲、乙兩班各15名同學(xué)的測試成績(滿分100分)進(jìn)行整理分析,過程如下:
(收集數(shù)據(jù))
甲班15名學(xué)生測試成績分別為:78,83,89,97,98,85,100,94,87,90,93,92,99,95;100.
乙班15名學(xué)生測試成績中90≤x<95的成績?nèi)缦拢?/span>91,92,94,90,93
(整理數(shù)據(jù)):
班級(jí) | 75≤x<80 | 80≤x<85 | 85≤x<90 | 90≤x<95 | 95≤x<100 |
甲 | 1 | 1 | 3 | 4 | 6 |
乙 | 1 | 2 | 3 | 5 | 4 |
(分析數(shù)據(jù)):
班級(jí) | 平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 |
甲 | 92 | a | 93 | 47.3 |
乙 | 90 | 87 | b | 50.2 |
(應(yīng)用數(shù)據(jù)):
(1)根據(jù)以上信息,可以求出:a=_____分,b=______分;
(2)若規(guī)定測試成績92分及其以上為優(yōu)秀,請(qǐng)估計(jì)參加防疫知識(shí)測試的480名學(xué)生中成績?yōu)閮?yōu)秀的學(xué)生共有多少人;
(3)根據(jù)以上數(shù)據(jù),你認(rèn)為哪個(gè)班的學(xué)生防疫測試的整體成績較好?請(qǐng)說明理由(一條理由即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,已知:,,,以斜邊AB的中點(diǎn)P為旋轉(zhuǎn)中心,把這個(gè)三角形按逆時(shí)針方向旋轉(zhuǎn)得到,則旋轉(zhuǎn)前后兩個(gè)直角三角形重疊部分的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在5×5的網(wǎng)格中,橫、縱坐標(biāo)均為整點(diǎn)的數(shù)叫做格點(diǎn),例如(0,1)、B(2,1)、C(3,3)都是格點(diǎn),現(xiàn)僅用無刻度的直尺在網(wǎng)格中做如下操作:
(1)直接寫出點(diǎn)A關(guān)于點(diǎn)B旋轉(zhuǎn)180°后對(duì)應(yīng)點(diǎn)M的坐標(biāo) ;
(2)畫出線段BE,使BE⊥AC,其中E是格點(diǎn),并寫出點(diǎn)E的坐標(biāo) ;
(3)找格點(diǎn)F,使∠EAF=∠CAB,畫出∠EAF,并寫出點(diǎn)F的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為6的等邊△ABC中,AD是BC邊上的中線,點(diǎn)E是△ABC內(nèi)一個(gè)動(dòng)點(diǎn),且DE=2,將線段AE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到AF,則DF的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,△OAB的邊OA在x軸的正半軸上,點(diǎn)B在第二象限,且∠AOB=135°,OA=2,OB=2,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)B,并與y軸交于點(diǎn)C(0,5),點(diǎn)P在拋物線的對(duì)稱軸上.
(1)求b、c的值,及拋物線的對(duì)稱軸.
(2)求證:以點(diǎn)M(2,5)為圓心,半徑為2的圓與邊AB相切.
(3)若滿足條件∠AOB+∠POD=180°與OB:OD=OA:OP的點(diǎn)D恰好在拋物線上,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn)和.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)點(diǎn)是線段上一點(diǎn),過點(diǎn)作軸于點(diǎn),交反比例函數(shù)圖象于點(diǎn),連接、,若的面積為,求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com