【答案】
分析:(1)根據(jù)拋物線y=ax
2+4x+b經(jīng)過A(1,0),B(3,0)兩點(diǎn),利用待定系數(shù)法即可求出二次函數(shù)解析式;
(2)點(diǎn)P為直線AE和拋物線的交點(diǎn),欲求點(diǎn)P,必須先求出直線AE的解析式.設(shè)直線AE與y軸的交點(diǎn)為F,易得△FOA∽△FEC,由于OA=1,EC=3,根據(jù)相似三角形的對應(yīng)邊成比例即可得到FE=3OF,設(shè)OF=x,則EF=3x,AF=3x-1,進(jìn)而可在Rt△FOA中求出x的值,也就能求出F點(diǎn)的坐標(biāo),然后利用待定系數(shù)法求出直線AE的解析式,與拋物線的解析式聯(lián)立即可得到點(diǎn)P的坐標(biāo);
(3)設(shè)M(n,n-3),過M作MG⊥x軸于G,過N作NH⊥x軸于H.分三種情況討論:①當(dāng)點(diǎn)M在第一象限時(shí),因?yàn)椤鱋MN是等腰直角三角形,即可證得△OMG≌△NOH,得MG=OH,NH=OG,由此可表示出N點(diǎn)的坐標(biāo),然后將其代入拋物線的解析式中,即可求得點(diǎn)M、N的坐標(biāo);②當(dāng)點(diǎn)M在第三象限時(shí),解法同①;③當(dāng)點(diǎn)M在第四象限時(shí),解法同①.
解答:解:(1)∵拋物線y=ax
2+4x+b經(jīng)過點(diǎn)A(1,0),B(3,0),
∴
,
解得:
,
∴拋物線的解析式為y=-x
2+4x-3;
(2)如圖,設(shè)AE交y軸于點(diǎn)F.
∵將△OAC沿AC翻折得到△ACE,
∴∠FOA=∠FEC=90°,CE=CO=3,AE=AO=1.
∵∠OFA=∠EFC,∠FOA=∠FEC=90°,
∴△FOA∽△FEC,
∴
=
=
,
設(shè)OF=x,則EF=3x,F(xiàn)A=EF-AE=3x-1.
在Rt△FOA中,由勾股定理得:
FA
2=OF
2+AO
2,
即(3x-1)
2=x
2+1,
解得x=
,
即OF=
,F(xiàn)(0,
).
設(shè)直線AE的解析式為y=kx+m,將A(1,0),F(xiàn)(0,
)代入,得
,解得
.
則直線AE的解析式為y=-
x+
.
解方程組
,
解得
或
.
故點(diǎn)P的坐標(biāo)為(
,-
);
(3)在拋物線上存在點(diǎn)N(2,1)或(5,-8),能使三點(diǎn)O,M,N構(gòu)成以O(shè)為直角頂點(diǎn)的等腰直角三角形.理由如下:
∵B(3,0),C(0,-3),
∴直線BC的解析式為:y=x-3;
過M作MG⊥x軸于G,過N作NH⊥x軸于H.設(shè)點(diǎn)M(n,n-3),分三種情況:
①當(dāng)點(diǎn)M在第一象限時(shí),如圖,則OG=n,MG=n-3;
∵點(diǎn)O,M,N構(gòu)成以O(shè)為直角頂點(diǎn)的等腰直角三角形,
∴∠MON=90°,OM=ON,
則可證得△MOG≌△ONH,得:
OG=NH=n,MG=OH=n-3,
∴N(n-3,-n),
將其代入拋物線的解析式中,得:
-(n-3)
2+4(n-3)-3=-n,
整理得:n
2-11n+24=0,
解得n=8,n=3(舍去);
故M(8,5),N(5,-8);
②當(dāng)點(diǎn)M在第三象限時(shí),OG=-n,MG=3-n;
同①可得:MG=OH=3-n,OG=NH=-n,
則N(3-n,n),代入拋物線的解析式可得:
-(3-n)
2+4(3-n)-3=n,
整理得:n
2-n=0,故n=0或=1.
由于點(diǎn)M在第三象限,
所以n<0,
故n=0或n=1均不合題意,此種情況不成立;
③當(dāng)點(diǎn)M在第四象限時(shí),如圖,則OG=n,MG=3-n;
同①得:N(3-n,n),在②中已經(jīng)求得此時(shí)n=0(舍去),n=1;
故M(1,-2),N(2,1);
綜上可知:存在符合條件的N點(diǎn),且坐標(biāo)為N(2,1)或(5,-8).
點(diǎn)評:此題主要考查了待定系數(shù)法求函數(shù)的解析式,函數(shù)圖象交點(diǎn)坐標(biāo)的求法,勾股定理,等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定與性質(zhì),二次函數(shù)的綜合應(yīng)用等知識(shí),綜合性較強(qiáng),有一定難度.需要注意的是第(3)題中,由于點(diǎn)M的位置不確定,一定要根據(jù)點(diǎn)M所處的不同象限分類討論,以免漏解.