【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.

(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;

(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.

【答案】(1)AB∥CD,理由見解析;(2)證明見解析;(3)∠HPQ的大小不發(fā)生變化,一直是45°

【解析】試題分析:(1)利用對頂角相等、等量代換可以推知同旁內(nèi)角∠AEF、∠CFE互補,所以易證ABCD

(2)利用(1)中平行線的性質(zhì)推知°;然后根據(jù)角平分線的性質(zhì)、三角形內(nèi)角和定理證得∠EPF=90°,即EGPF,故結(jié)合已知條件GHEG,易證PFGH;

(3)利用三角形外角定理、三角形內(nèi)角和定理求得∠4=90°-∠3=90°-2∠2;然后由鄰補角的定義、角平分線的定義推知∠QPK=EPK=45°+∠2;最后根據(jù)圖形中的角與角間的和差關(guān)系求得∠HPQ的大小不變,是定值45°.

試題解析:(1)如圖1,

∵∠1與∠2互補,

∴∠1+∠2=180°.

又∵∠1=∠AEF,∠2=∠CFE,

∴∠AEF+∠CFE=180°,

ABCD;

(2)如圖2,由(1)知,ABCD,

∴∠BEF+∠EFD=180°.

又∵∠BEF與∠EFD的角平分線交于點P,

∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,

∴∠EPF=90°,即EGPF

GHEG,

PF∥GH;

(3)∠HPQ的大小不發(fā)生變化,理由如下:

如圖3,∵∠1=∠2,

∴∠3=2∠2.

又∵GHEG

∴∠4=90°-∠3=90°-2∠2.

∴∠EPK=180°-∠4=90°+2∠2.

PQ平分∠EPK,

∴∠QPK=EPK=45°+∠2.

∴∠HPQ=∠QPK-∠2=45°,

∴∠HPQ的大小不發(fā)生變化,一直是45°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列各組數(shù)中,不相等的一組是( 。

A. (-23和-23 B. (-22和-22

C. +(-2)和-2 D. |2|3|2|3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1個單位長度.平面直角坐標系xOy的原點O在格點上,x軸、y軸都在格線上.線段AB的兩個端點也在格點上.

1)若將線段AB繞點O逆時針旋轉(zhuǎn)90°得到線段A1B1,試在圖中畫出線段A1B1

2)若線段A2B2與線段A1B1關(guān)于y軸對稱,請畫出線段A2B2

3)若點P是此平面直角坐標系內(nèi)的一點,當點AB1、B2、P四邊圍成的四邊形為平行四邊形時,請你直接寫出點P的坐標(寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將拋物線y=x2向左平移5個單位,得到的拋物線解析式為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,折疊長方形紙片的一邊AD,使點D落在BC邊上的點F處,已知BC=10cm,AB=8cm,求EC的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中,假命題是( )

A. 兩組對角分別相等的四邊形是平行四邊形

B. 有一條對角線與一組鄰邊構(gòu)成等腰三角形的平行四邊形是菱形

C. 一組鄰邊互相垂直,兩組對邊分別平行的四邊形是矩形

D. 有一組鄰邊相等且互相垂直的平行四邊形是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系xoy中,直線y=2x+4與y軸交于A點,與x軸交于B點,拋物線C1:y=-xbx+c過A、B兩點,與x軸另一交點為C。

(1)求拋物線解析式及C點坐標。

(2向右平移拋物線C1,使平移后的拋物線C2恰好經(jīng)過ABC的外心,拋物線C1、C2相交于點D,求四邊形AOCD的面積。

(3)已知拋物線C2的頂點為M,設(shè)P為拋物線C1對稱軸上一點,Q為拋物線C1上一點,是否存在以點M、Q、P、B為頂點的四邊形為平行四邊形,若存在,直接寫出P點坐標,不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,對角線AC、BD相交于點O,DE∥AC,AE∥BD.

(1)求證:四邊形AODE是矩形;

(2)若AB=4,∠BCD=120°,求四邊形AODE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,保證的條件是(

A. B.

C. D.

查看答案和解析>>

同步練習冊答案