【題目】如圖,已知,,且,,是的中點(diǎn).
(1)請(qǐng)你用直尺(無刻度)作出一條與相等的線段,并利用三角形全等證明該線段與相等;
(2)求的長.
【答案】(1)詳見解析;(2)5
【解析】
(1)延長BE與CD相交于點(diǎn)F,則EF=BE,證明△AEB≌△△DEF,根據(jù)全等三角形的性質(zhì)證明結(jié)論;
(2)根據(jù)全等三角形的性質(zhì)得到DF=AB=6,根據(jù)勾股定理求出BF,根據(jù)全等三角形的性質(zhì)計(jì)算.
解:(1)延長BE與CD相交于點(diǎn)F,則EF=BE,
證明:∵AB∥CD,
∴∠A=∠D,∠ABE=∠DFE,
∵E是AD的中點(diǎn),
∴AE=DE,
在△AEB與△DEF中,
∴△AEB≌△△DEF(AAS),
∴BE=EF;
(2)∵△AEB≌△△DEF,
∴DF=AB=6,BE=EF=BF,
∴CF=CD-DF=6,
∵BC⊥CD,
∴BF=
∴BE=BF=5
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年12月16日揚(yáng)州首批為民服務(wù)5G站點(diǎn)正式上線,自此有了5G網(wǎng)絡(luò).5G網(wǎng)絡(luò)峰值速率為4G網(wǎng)絡(luò)峰值速率的10倍,在峰值速率下傳輸500兆數(shù)據(jù),5G網(wǎng)絡(luò)比4G網(wǎng)絡(luò)快45秒,求這兩種網(wǎng)絡(luò)的峰值速率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2:
(1)求反比例函數(shù)的表達(dá)式;
(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(―3,6)、B(―9,一3),以原點(diǎn)O為位似中心,相似比為,把△ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016湖北省黃岡市)如圖,已知點(diǎn)A(1,a)是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象在第四象限的交點(diǎn)為點(diǎn)B.
(1)求直線AB的解析式;
(2)動(dòng)點(diǎn)P(x,0)在x軸的正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).
【答案】(1)y=x﹣4;(2)P(4,0).
【解析】試題分析:(1)先把A(1,a)代入反比例函數(shù)解析式求出a得到A點(diǎn)坐標(biāo),再解方程組,得B點(diǎn)坐標(biāo),然后利用待定系數(shù)法求AB的解析式;
(2)直線AB交x軸于點(diǎn)Q,如圖,利用x軸上點(diǎn)的坐標(biāo)特征得到Q點(diǎn)坐標(biāo),則PA﹣PB≤AB(當(dāng)P、A、B共線時(shí)取等號(hào)),于是可判斷當(dāng)P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)時(shí),線段PA與線段PB之差達(dá)到最大,從而得到P點(diǎn)坐標(biāo).
試題解析:(1)把A(1,a)代入得a=﹣3,則A(1,﹣3),解方程組: ,得: 或,則B(3,﹣1),設(shè)直線AB的解析式為y=kx+b,把A(1,﹣3),B(3,﹣1)代入得: ,解得: ,所以直線AB的解析式為y=x﹣4;
(2)直線AB交x軸于點(diǎn)Q,如圖,當(dāng)y=0時(shí),x﹣4=0,解得x=4,則Q(4,0),因?yàn)?/span>PA﹣PB≤AB(當(dāng)P、A、B共線時(shí)取等號(hào)),所以當(dāng)P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)時(shí),線段PA與線段PB之差達(dá)到最大,此時(shí)P點(diǎn)坐標(biāo)為(4,0).
考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.
【題型】解答題
【結(jié)束】
22
【題目】成都三圣鄉(xiāng)花卉基地出售兩種盆栽花卉:太陽花6元/盆,繡球花10元/盆.若一次購買的繡球花超過20盆時(shí),超過20盆部分的繡球花價(jià)格打8折.
(1)若小張家花臺(tái)綠化需用60盆兩種盆栽花卉,小張爸爸給他460元錢去購買,問兩種花卉各買了多少盆?
(2)分別寫出兩種花卉的付款金額y(元)關(guān)于購買量x(盆)的函數(shù)解析式;
(3)為了美化環(huán)境,花園小區(qū)計(jì)劃到該基地購買這兩種花卉共90盆,其中太陽花數(shù)量不超過繡球花數(shù)量的一半.兩種花卉各買多少盆時(shí),總費(fèi)用最少,最少費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,BD=2AD,E、F、G分別是OC、OD、AB的中點(diǎn),下列結(jié)論:①BE⊥AC;②四邊形BEFG是平行四邊形;③△EFG≌△GBE;④EG=EF,其中正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鐘南山院士談到防護(hù)新型冠狀病毒肺炎時(shí)說:“我們需要重視防護(hù),但也不必恐慌,盡量少去人員密集的場(chǎng)所,出門戴口罩,在室內(nèi)注意通風(fēng),勤洗手,多運(yùn)動(dòng),少熬夜.”某社區(qū)為了加強(qiáng)社區(qū)居民對(duì)新型冠狀病毒肺炎防護(hù)知識(shí)的了解,通過微信群宣傳新型冠狀病毒肺炎的防護(hù)知識(shí),并鼓勵(lì)社區(qū)居民在線參與作答《2020年新型冠狀病毒防治全國統(tǒng)一考試(全國卷)》試卷(滿分100分),社區(qū)管理員隨機(jī)從有400人的某小區(qū)抽取40名人員的答卷成績,并對(duì)他們的成績(單位:分)統(tǒng)計(jì)如下:
85 | 80 | 95 | 100 | 90 | 95 | 85 | 65 | 75 | 85 |
90 | 90 | 70 | 90 | 100 | 80 | 80 | 90 | 95 | 75 |
80 | 60 | 80 | 95 | 85 | 100 | 90 | 85 | 85 | 80 |
95 | 75 | 80 | 90 | 70 | 80 | 95 | 75 | 100 | 90 |
根據(jù)數(shù)據(jù)繪制了如下的表格和統(tǒng)計(jì)圖:
等級(jí) | 成績() | 頻率 | 頻率 |
10 | 0.25 | ||
12 | 0.3 | ||
合計(jì) | 40 | 1 |
根據(jù)上面提供的信息,回答下列問題:
(1)統(tǒng)計(jì)表中的 , ;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)估計(jì)該小區(qū)答題成績?yōu)?/span>“級(jí)”的有多少人?
(4)該社區(qū)有2名男管理員和2名女管理員,現(xiàn)從中隨機(jī)挑選2名管理員參加“社區(qū)防控”宣傳活動(dòng),請(qǐng)用樹狀圖法或列表法求出恰好選中“1男1女”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將函數(shù)y=(x﹣2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A(1,m),B(4,n)平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com