(2014•金山區(qū)一模)如圖1,某超市從底樓到二樓有一自動扶梯,圖2是側(cè)面示意圖.已知自動扶梯AB的坡度為1:2.4,AB的長度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動扶梯頂端B點正上方的一點,BC⊥MN,在自動扶梯底端A處測得C點的仰角為42°,求二樓的層高BC(精確到0.1米).
(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
分析:延長CB交PQ于點D,根據(jù)坡度的定義即可求得BD的長,然后在直角△CHO中利用三角函數(shù)即可求得CD的長,則BC即可得到.
解答:解:延長CB交PQ于點D.
∵MN∥PQ,BC⊥MN,
∴BC⊥PQ.
∵自動扶梯AB的坡度為1:2.4,
BD
AD
=
1
2.4
=
5
12

設(shè)BD=5k米,AD=12k米,則AB=13k米.
∵AB=13米,
∴k=1,
∴BD=5米,AD=12米.
在Rt△CHO中,∠CHO=90°,∠CAD=42°,
∴CD=AD•tan∠CAD≈12×0.90≈10.8米,
∴BC≈5.8米.
答:二樓的層高BC約為5.8米.
點評:本題考查仰角和坡度的定義,要求學(xué)生能借助仰角構(gòu)造直角三角形并解直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2014•金山區(qū)一模)已知在△ABC中,點D、E分別在邊AB、AC上,DE∥BC,
AD
AB
=
3
5
,那么
AE
CE
的值等于
3
2
3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2014•金山區(qū)一模)兩個相似三角形的面積比為1:4,那么這兩個三角形的周長比為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2014•金山區(qū)一模)如果向量
a
與單位向量
e
方向相反,且長度為
1
2
,那么向量
a
用單位向量
e
表示為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2014•金山區(qū)一模)將拋物線y=x2向右平移1個單位,所得新拋物線的函數(shù)解析式是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2014•金山區(qū)一模)在Rt△ABC中,∠A=90°,如果把這個直角三角形的各邊長都擴大2倍,那么所得到的直角三角形中,∠B的正切值( 。

查看答案和解析>>

同步練習(xí)冊答案