19.在△ABC中,a,b,c是三角形的三邊,若$\sqrt{(a-b+c)^{2}}$+$\sqrt{(c-a-b)^{2}}$=6,求a的值.

分析 直接利用三角形三邊關(guān)系得出a+c-b>0,c-a-b<0,進(jìn)而化簡(jiǎn)二次根式求出答案.

解答 解:∵a,b,c是三角形的三邊,
∴a+c-b>0,c-a-b<0,
則$\sqrt{(a-b+c)^{2}}$+$\sqrt{(c-a-b)^{2}}$=6
a-b+c-(c-a-b)=6,
整理得:2a=6,
解得:a=3.

點(diǎn)評(píng) 此題主要考查了二次根式的性質(zhì)與化簡(jiǎn)以及三角形三邊關(guān)系,正確掌握二次根式的性質(zhì)是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某數(shù)的立方根的絕對(duì)值等于5,求這個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.用配方法解方程:x2-5=2$\sqrt{3}$x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知半徑為r的圓的面積是半徑為2cm和3cm的兩個(gè)圓的面積之和,則r=( 。
A.5cmB.$\sqrt{5}$cmC.13cmD.$\sqrt{13}$cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.若代數(shù)式$\sqrt{(2-a)^{2}}$+$\sqrt{(a-4)^{2}}$=2成立,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,∠A、∠B滿足|sinA-$\frac{\sqrt{3}}{2}$|+(1-$\sqrt{3}$tanB)2=0,試判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知如圖,⊙P與x軸切于點(diǎn)O,P點(diǎn)的坐標(biāo)為(0,2),點(diǎn)A在⊙P上,且A點(diǎn)的坐標(biāo)為(1,2+$\sqrt{3}$),⊙P沿x軸正方向滾動(dòng),當(dāng)點(diǎn)A第一次落在x軸上時(shí),點(diǎn)P的坐標(biāo)為($\frac{5}{3}π$,2)(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

4.比較:28°15′>28.15°(填“>”、“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,線段AB與CD相交于點(diǎn)E,AB⊥BD,垂足為B,AC⊥CD,垂足為C.
(1)如圖1,若AB=CD,∠BDE=30°,試探究線段DE與CE的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖2,若AB=BD,∠BDE=22.5°,試探究線段DE與AC的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案