(2012•中山一模)如圖,PA、PB是⊙O的切線,A、B為切點,AC是⊙O的直徑,∠BAC=20°,求∠P的度數(shù)為( 。
分析:根據(jù)切線性質(zhì)得出PA=PB,∠PAO=90°,求出∠PAB的度數(shù),得出∠PAB=∠PBA,根據(jù)三角形的內(nèi)角和定理求出即可.
解答:解:∵PA、PB是⊙O的切線,A、B為切點,AC是⊙O的直徑,
∴∠CAP=90°,PA=PB,
∴∠PAB=∠PBA,
∵∠BAC=20°,
∴∠PBA=∠PAB=90°-20°=70°,
∴∠P=180°-∠PAB-∠PBA=180°-70°-70°=40°,
故選D.
點評:本題考查了切線長定理,切線性質(zhì),三角形的內(nèi)角和定理,等腰三角形的性質(zhì)的應(yīng)用,主要考查學(xué)生運用定理進行推理和計算的能力,題目具有一定的代表性,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•中山一模)2011年9月,我國“雜交水稻之父”袁隆平主持研究的“Y兩優(yōu)2號”百畝超級雜交稻試驗田,在湖南省邵陽市隆回縣成熟收割,經(jīng)專家組測產(chǎn)驗收,平均畝產(chǎn)達到926.6公斤.這百畝試驗田總產(chǎn)量用科學(xué)記數(shù)法表示是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•中山一模)計算:2sin60°+|1-
1
3
|+(-
1
2
)-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•中山一模)如圖,△ABC中,A(-2,3),B(-3,1),C(-1,2).
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)將△ABC繞原點O旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后的△A2B2C2;
(3)△A1B1C1與△A2B2C2關(guān)于
x軸
x軸
成軸對稱.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•中山一模)如圖,在△ABC中,∠A=70°,AB=AC,CD平分∠ACB.求∠ADC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案