如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論中正確的個數(shù)有①∠EAF=45°;②△ABE∽△ACD;③AE平分∠CAF;④BE2+DC2=DE2( 。
A.1個 B.2個 C.3個 D.4個
B
【解析】
試題分析:①根據(jù)旋轉(zhuǎn)的性質(zhì)知∠CAD=∠BAF,因為∠BAC=90°,∠DAE=45°,所以∠CAD+∠BAE=45°,可得∠EAF=45°;
②因為∠CAD與∠BAE不一定相等,所以△ABE與△ACD不一定相似;
③根據(jù)SAS可證△ADE≌△AFE,得∠AED=∠AEF;DE=EF;
④BF=CD,EF=DE,∠FBE=90°,根據(jù)勾股定理判斷.
解:①根據(jù)旋轉(zhuǎn)的性質(zhì)知∠CAD=∠BAF.
∵∠BAC=90°,∠DAE=45°,
∴∠CAD+∠BAE=45°.
∴∠EAF=45°,故①正確;
②因為∠CAD與∠BAE不一定相等,所以△ABE與△ACD不一定相似,故②錯誤;
③∵AF=AD,∠FAE=∠DAE=45°,AE=AE,
∴△ADE≌△AFE,得∠AED=∠AEF,
即AE平分∠DAF,故③錯誤;
④∵∠FBE=45°+45°=90°,
∴BE2+BF2=EF2(勾股定理),
∵△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,∴△AFB≌△ADC,∴BF=CD,
又∵EF=DE,
∴BE2+CD2=DE2(等量代換).故④正確.
故選B.
考點:相似三角形的判定;全等三角形的判定與性質(zhì);勾股定理;旋轉(zhuǎn)的性質(zhì).
點評:此題主要考查圖形的旋轉(zhuǎn)變換,解題時注意旋轉(zhuǎn)前后對應(yīng)的相等關(guān)系.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com