【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長線上一點(diǎn),點(diǎn)E在BC上,且AE=CF;
(1)求證:Rt△ABE≌Rt△CBF;
(2)求證:AB=CE+BF;
(3)若∠CAE=30°,求∠ACF度數(shù).
【答案】(1)證明見解析;(2)證明見解析;(3)60°
【解析】
試題分析:(1)根據(jù)在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長線上一點(diǎn),點(diǎn)E在BC上,且AE=CF,可以得到Rt△ABE和Rt△CBF全等的條件,從而可以證明Rt△ABE≌Rt△CBF;
(2)根據(jù)Rt△ABE≌Rt△CBF,可以得到AB=BC,BE=BF,然后即可轉(zhuǎn)化為AB、CE、BF的關(guān)系,從而可以證明所要證明的結(jié)論;
(3)根據(jù)Rt△ABE≌Rt△CBF,AB=CB,∠CAE=30°,可以得到∠ACF的度數(shù).
(1)證明:∵∠ABC=90°,
∴∠ABE=∠CBF=90°,
在Rt△ABE和Rt△CBF中,
,
∴Rt△ABE≌Rt△CBF(HL);
(2)證明:∵Rt△ABE≌Rt△CBF,
∴AB=BC,BE=BF,
∵BC=BE+CE,
∴AB=CE+BF.
(3)∵AB=CB,∠ABC=90°,∠CAE=30°,∠CAB=∠CAE+∠EAB,
∴∠BCA=∠BAC=45°,
∴∠EAB=15°,
∵Rt△ABE≌Rt△CBF,
∴∠EAB=∠FCB,
∴∠FCB=15°,
∴∠ACF=∠FCB+∠BCA=15°+45°=60°,
即∠ACF=60°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 (1)①如圖1,已知AB∥CD,∠ABC=60°,可得∠BCD=_______°;
②如圖2,在①的條件下,如果CM平分∠BCD,則∠BCM=_________°;
③如圖3,在①、②的條件下,如果CN⊥CM,則∠BCN=___________°.
(2)、嘗試解決下面問題:已知如圖4,AB∥CD,∠B=40°,CN是∠BCE的平分線, CN⊥CM,求∠BCM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)正多邊形相鄰的內(nèi)角比外角大140°.
(1)求這個(gè)正多邊形的內(nèi)角與外角的度數(shù);
(2)直接寫出這個(gè)正多邊形的邊數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x=2是一元二次方程(m﹣2)x2+4x﹣m2=0的一個(gè)根,則m的值為( )
A.2 B.0或2 C.0或4 D.0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點(diǎn)F.
(1)求證:AD=CE;
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(﹣1,2),且與X軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列結(jié)論:
①4a﹣2b+c<0;②2a﹣b<0;③a+c<1;④b2+8a>4ac,
其中正確的有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AC+AB=14,(AC>AB),AD為BC邊上的中線,把△ABC的周長分為兩部分,這兩部分的差為2,求AB、AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.“打開電視機(jī),正在播放《動(dòng)物世界》”是必然事件
B.某種彩票的中獎(jiǎng)概率為,說明每買1000張,一定有一張中獎(jiǎng)
C.拋擲一枚質(zhì)地均勻的硬幣一次,出現(xiàn)正面朝上的概率為
D.想了解長沙市所有城鎮(zhèn)居民的人均年收入水平,宜采用抽樣調(diào)查
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com