精英家教網(wǎng)如圖,在直角△ABC中,∠C=90°,若AB=5,AC=4,則tan∠B=(  )
A、
3
5
B、
4
5
C、
3
4
D、
4
3
分析:先根據(jù)勾股定理求出BC的長,再根據(jù)tan∠B=
AC
BC
即可解答.
解答:解:∵直角△ABC中,∠C=90°,AB=5,AC=4,
∴BC=
AB2-AC2
=
52-42
=3.
∴tan∠B=
AC
BC
=
4
3

故選D.
點評:本題比較簡單,考查的是勾股定理及銳角三角函數(shù)的定義,即在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,在直角△ABC中,∠C=90°、AB=6、AC=3,⊙O與邊AB相切于點D、與邊AC交于點E,連接DE,若DE∥BC,AE=2EC,則⊙O的半徑是
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角△ABC中,∠C=90°,AB的垂直平分線交AB于D,交AC于F,且BE平分∠ABC,則∠A=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角△ABC中,∠C=90°,∠CAB的平分線AD交BC于點D,DE垂直平分AB.
(1)求∠B的度數(shù);
(2)若DC=1,求DB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖.在直角△ABC中,已知∠ACB=90°,CD⊥AB于點D,則下列關(guān)系不一定成立的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角△ABC中,∠A=90°,BC邊上的垂直平分線交AC于點D;BD平分∠ABC,已知AC=m+2n,BC=2m+2n,則△BDE的周長為
2m+3n
2m+3n
(用含m,n字母表示).

查看答案和解析>>

同步練習冊答案