【題目】如圖,在單位長度為1的數(shù)軸上,點A表示的數(shù)為,點B表示的數(shù)為4.
(1)求的長;
(2)若把圖中數(shù)軸的單位長度擴大30倍,點A,點B表示的數(shù)也相應(yīng)發(fā)生變化,已知點P是線段的三等分點,求點P表示的數(shù).
【答案】(1);(2)點P表示的數(shù)為或55.
【解析】
(1)用點B表示的數(shù)減去點A表示的數(shù)即可得到AB的長;
(2)由擴大30倍求出點A、B表示的數(shù),得到線段AB的長,根據(jù)點P是線段的三等分點,分兩種情況確定點P表示的數(shù).
(1);
(2)根據(jù)題意可知,數(shù)軸的單位長度擴大30倍,
則點A表示的數(shù)為,
點B表示的數(shù)為,
所以;
當(dāng)點P靠近點A時,,
所以點P表示的數(shù)為;
當(dāng)點P靠近點B時,,
所以點P表示的數(shù)為.
綜上所述,點P表示的數(shù)為或55.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(-6,0),B(2,0),點C在直線上,則使△ABC是直角三角形的點C的個數(shù)為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:中,,求證:,下面寫出可運用反證法證明這個命題的四個步驟:
①∴,這與三角形內(nèi)角和為矛盾,②因此假設(shè)不成立.∴,③假設(shè)在中,,④由,得,即.這四個步驟正確的順序應(yīng)是( )
A.③④②①B.③④①②C.①②③④D.④③①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),已知點A的坐標(biāo)為(-6,0),直線l:y=kx+b不經(jīng)過第四象限,且與x軸的夾角為30°,點P為直線l上的一個動點,若點P到點A的最短距離是2,則b的值為( 。
A. 或B. C. 2D. 2或10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時)與所用時間t(小時)的函數(shù)關(guān)系如圖所示,其中60≤v≤120.
(1)直接寫出v與t的函數(shù)關(guān)系式;
(2)若一輛貨車同時從乙地出發(fā)前往甲地,客車比貨車平均每小時多行駛20千米,3小時后兩車相遇.
①求兩車的平均速度;
②甲、乙兩地間有兩個加油站A、B,它們相距200千米,當(dāng)客車進入B加油站時,貨車恰好進入A加油站(兩車加油的時間忽略不計),求甲地與B加油站的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,BC=2,CD=1,以AD為直徑的半圓O與BC相切于點E,連接BD,則陰影部分的面積為__________.(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=50°,連接AC,BD
交于點M.
①的值為 ;②∠AMB的度數(shù)為 °;
(2)如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點M.求的值及∠AMB的度數(shù);
(3)在(2)的條件下,將△OCD繞點O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點M.若OD=,OB=,請直接寫出當(dāng)點C與點M重合時AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,點D、F分別在邊AB、AC上,請直接寫出線段BD、CF的數(shù)量和位置關(guān)系;
(2)拓展探究:如圖2,當(dāng)正方形ADEF繞點A逆時針旋轉(zhuǎn)銳角θ時,上述結(jié)論還成立嗎?若成立,請給予證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一矩形OABC放在直角坐標(biāo)系中,O為坐標(biāo)原點,點A在y軸正半軸上,點E是邊AB上的一個動點不與點A、B重合,過點E的反比例函數(shù)的圖象與邊BC交于點F
若的面積為,且,求k的值;
若,,反比例函數(shù)的圖象與邊AB、邊BC交于點E和F,當(dāng)沿EF折疊,點B恰好落在OC上,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com