精英家教網 > 初中數學 > 題目詳情
如果α、β是一元二次方程x2+3x-1=0的兩個根,那么α2+2α-β的值是   
【答案】分析:根據α2+2α-β=α2+3α-α-β=α2+3α-(α+β),利用一元二次方程根與系數的關系,可以求得兩根之積或兩根之和,再根據方程的解的定義可得α2+3α=1,代入求值即可.
解答:解:∵α,β是方程x2+3x-1=0的兩個實數根,
∴α+β=-3,α2+3α-1=0即α2+3α=1,
又∵α2+2α-β=α2+3α-α-β=α2+3α-(α+β),
將α+β=-3,α2+3α=1代入得,
α2+2α-β=α2+3α-(α+β)=1+3=4.
故填空答案:4.
點評:此題主要考查了一元二次方程根與系數的關系,將根與系數的關系與代數式變形相結合解題是一種經常使用的解題方法.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

下列說法“①任意兩個正方形必相似;②如果兩個相似三角形對應高的比為4:5,那么它們的面積比為4:5;③拋物線y=-(x-1)2+3對稱軸是直線x=1,當x<1時,y隨x的增大而增大;④若
a
b
=
2
3
,則
a+b
2a
=
5
4
;⑤一元二次方程x2-x=4的一次項系數是-1;⑥
2
8
不是同類二次根式”中,正確的個數有( 。﹤
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•蘭州)若x1、x2是關于一元二次方程ax2+bx+c(a≠0)的兩個根,則方程的兩個根x1、x2和系數a、b、c有如下關系:x1+x2=-
b
a
,x1•x2=
c
a
.把它稱為一元二次方程根與系數關系定理.如果設二次函數y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數關系定理可以得到A、B兩個交點間的距離為:AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|
;
參考以上定理和結論,解答下列問題:
設二次函數y=ax2+bx+c(a>0)的圖象與x軸的兩個交點A(x1,0),B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.
(1)當△ABC為直角三角形時,求b2-4ac的值;
(2)當△ABC為等邊三角形時,求b2-4ac的值.

查看答案和解析>>

科目:初中數學 來源: 題型:單選題

下列說法“①任意兩個正方形必相似;②如果兩個相似三角形對應高的比為4:5,那么它們的面積比為4:5;③拋物線y=-(x-1)2+3對稱軸是直線x=1,當x<1時,y隨x的增大而增大;④若數學公式,則數學公式;⑤一元二次方程x2-x=4的一次項系數是-1;⑥數學公式不是同類二次根式”中,正確的個數有_____個


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

下列說法“①任意兩個正方形必相似;②如果兩個相似三角形對應高的比為4:5,那么它們的面積比為4:5;③拋物線y=-(x-1)2+3對稱軸是直線x=1,當x<1時,y隨x的增大而增大;④若
a
b
=
2
3
,則
a+b
2a
=
5
4
;⑤一元二次方程x2-x=4的一次項系數是-1;⑥
2
8
不是同類二次根式”中,正確的個數有( 。﹤
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源:2009-2010學年福建省廈門市第九中學九年級(上)期中數學試卷(解析版) 題型:選擇題

下列說法“①任意兩個正方形必相似;②如果兩個相似三角形對應高的比為4:5,那么它們的面積比為4:5;③拋物線y=-(x-1)2+3對稱軸是直線x=1,當x<1時,y隨x的增大而增大;④若,則;⑤一元二次方程x2-x=4的一次項系數是-1;⑥不是同類二次根式”中,正確的個數有( )個
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案