(2009•同安區(qū)質(zhì)檢)將兩塊全等的含30°角的三角尺如圖1擺放在一起,它們的較短直角邊長(zhǎng)為3
(1)將△ECD沿直線l向左平移到圖2的位置,使E點(diǎn)落在AB上,點(diǎn)C平移后的對(duì)應(yīng)點(diǎn)為C1,則CC1=
3-
3
3-
3
;將△ECD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)到圖3的位置,使點(diǎn)E恰好落在AB上,則△ECD繞點(diǎn)C旋轉(zhuǎn)的度數(shù)=
30
30
度;(本小題直接寫(xiě)出結(jié)果即可)
(2)將△ECD沿直線AC翻折到圖4的位置,點(diǎn)D的對(duì)應(yīng)點(diǎn)為D1,ED1與AB相交于點(diǎn)F,求證:AF=FD1
分析:(1)根據(jù)題意:E1是AB的中點(diǎn),即BC1=BC-CC1,則CC1=BC-BC1,進(jìn)而求出即可,△ECD繞點(diǎn)C旋轉(zhuǎn)的度數(shù)即∠ECE2的度數(shù);易得:∠ECE2=∠BAC=30°;
(2)根據(jù)條件,由AAS證明△AEF≌△D1BF進(jìn)而得出AF=FD1
解答:解:(1)∵EC=3,∠A=30°,
∴AC=
3
tan30°
=3
3
,
∴AE=3
3
-3,
∴CC1=EE1=AE×tan30°=3-
3
;
△ECD繞點(diǎn)C旋轉(zhuǎn)的度數(shù)即∠ECE2的度數(shù);
∵∠ABC=60°,BC=CE2=3,AB=6,
∴△E2BC是等邊三角形,
∴BC=E2C=E2B=3,
∴AE2=E2C=3,
∴∠E2AC=∠E2CA,
∴∠ECE2=∠BAC=30°.
故答案為:3-
3
,30;

(2)證明:在△AEF和△D1BF中,
∵AE=AC-EC,D1B=D1C-BC,
又AC=D1 C,EC=BC,∴AE=D1 B.
∠D1BF=∠AEF=180°-60°=120°,
在△AEF和△D1BF中
∠AFE=∠D1FB
∠FEA=∠FBD1
AE=BD1
,
∴△AEF≌△D1BF(AAS).
∴AF=F D1
點(diǎn)評(píng):本題考查平移、旋轉(zhuǎn)的性質(zhì);平移的基本性質(zhì)是:①平移不改變圖形的形狀和大;②經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等.旋轉(zhuǎn)變化前后,對(duì)應(yīng)線段、對(duì)應(yīng)角分別相等,圖形的大小、形狀都不改變,兩組對(duì)應(yīng)點(diǎn)連線的交點(diǎn)是旋轉(zhuǎn)中心.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•同安區(qū)質(zhì)檢)(1)計(jì)算:
4
+(-2009)0-(
1
3
)-1+4sin30°

(2)先化簡(jiǎn),再求值:a(a+2)-a2,其中a=-
1
2

(3)解方程:
2
x-3
=
3
x-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•同安區(qū)質(zhì)檢)如圖,一次函數(shù)的圖象經(jīng)過(guò)M點(diǎn),與x軸交于A點(diǎn),與y軸交于B點(diǎn),根據(jù)圖中信息求:
(1)直線AB的函數(shù)關(guān)系式;
(2)若點(diǎn)P(m,n)是直線AB上的一動(dòng)點(diǎn),且-3≤m≤2,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•同安區(qū)質(zhì)檢)小明與他的爸爸一起做投籃球游戲,兩人商量規(guī)則為:小明投中1個(gè)球得3分,小明爸爸投中1個(gè)球得1分.結(jié)果兩人一共得了20分.
(1)若兩人一共投中12個(gè)球,則他們兩個(gè)各投中幾個(gè)球?
(2)若小明投中球的個(gè)數(shù)比他的爸爸多,則他們各投中幾個(gè)球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•同安區(qū)質(zhì)檢)已知:拋物線y=x2-2x-m(m>0)與y軸交于點(diǎn)C,點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)C1
(1)求拋物線的對(duì)稱軸及點(diǎn)C、C1的坐標(biāo)(可用含m的代數(shù)式表示);
(2)如果點(diǎn)Q在拋物線的對(duì)稱軸上,點(diǎn)P在拋物線上,以點(diǎn)C、C1、P、Q為頂點(diǎn)的四邊形是平行四邊形,求所有平行四邊形的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案