【題目】如果x22kx16是一個(gè)完全平方式,那么k__________;

【答案】±4

【解析】

根據(jù)兩數(shù)的平方和加上或減去兩數(shù)積的2倍等于兩數(shù)和或差的完全平方,即可求出k的值.

解:∵x22kx16是一個(gè)完全平方式,
2k=±8,
k=±4
故答案為:±4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點(diǎn)在BC邊上,且拋物線經(jīng)過(guò)O,A兩點(diǎn),直線AC交拋物線于點(diǎn)D.

(1)求拋物線的解析式;

(2)求點(diǎn)D的坐標(biāo);

(3)若點(diǎn)M在拋物線上,點(diǎn)N在x軸上,是否存在以A,D,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,EAB的中點(diǎn),連接DE并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)F,點(diǎn)MBC邊上,且∠MDF=ADF

1)求證:ADE≌△BFE

2)連接EM,如果FM=DM,判斷EMDF的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店原來(lái)將進(jìn)貨價(jià)為8元的商品按10元售出,每天可銷(xiāo)售200.現(xiàn)在采用提高售價(jià),減少進(jìn)貨量的方法來(lái)增加利潤(rùn),已知每件商品漲價(jià)1元,每天的銷(xiāo)售量就減少20.設(shè)這種商品每個(gè)漲價(jià)元.

1)填空:原來(lái)每件商品的利潤(rùn)是 元,漲價(jià)后每件商品的實(shí)際利潤(rùn)是 (可用含的代數(shù)式表示);

2)為了使每天獲得700元的利潤(rùn),售價(jià)應(yīng)定為多少元?

(3)售價(jià)定為多少元時(shí),每天利潤(rùn)最大,最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知銳角△ABC中,CD、BE分別是AB、AC邊上的高,M、N分別是線段BC、DE的中點(diǎn).

(1)求證:MN⊥DE.

(2)連結(jié)DM,ME,猜想∠A與∠DME之間的關(guān)系,并證明猜想.

(3)當(dāng)∠A變?yōu)殁g角時(shí),如圖,上述(1)(2)中的結(jié)論是否都成立, 若結(jié)論成立,直接回答,不需證明;若結(jié)論不成立,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的文字,解答問(wèn)題.

大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫(xiě)出來(lái),但是由于1<<2,所以的整數(shù)部分為1,將減去其整數(shù)部分1,差就是小數(shù)部分-1,根據(jù)以上的內(nèi)容,解答下面的問(wèn)題:

1的整數(shù)部分是 ,小數(shù)部分是 ;

21+的整數(shù)部分是 ,小數(shù)部分是 ;

3若設(shè)2+整數(shù)部分是x,小數(shù)部分是y,求x-y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,將正方形向上平移3個(gè)單位后,得到的正方形各頂點(diǎn)與原正方形各頂點(diǎn)坐標(biāo)相比( 。

A.橫坐標(biāo)不變,縱坐標(biāo)加 3B.縱坐標(biāo)不變,橫坐標(biāo)加 3

C.橫坐標(biāo)不變,縱坐標(biāo)乘以 3D.縱坐標(biāo)不變,橫坐標(biāo)乘以 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知n為整數(shù),試說(shuō)明(n+7)2﹣(n﹣3)2一定能被20整除.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn)再求值:2a2-4ab+a-(a2+a-3ab).其中a= -2,b=3

查看答案和解析>>

同步練習(xí)冊(cè)答案