學(xué)生在討論命題:“如圖,梯形ABCD中,AD∥BC,∠B=∠C,則AB=DC.”的證明方法時(shí),提出了如下三種思路.
思路1:過(guò)一個(gè)頂點(diǎn)作另一腰的平行線,轉(zhuǎn)化為等腰三角形和平行四邊形
思路2:延長(zhǎng)兩腰相交于一點(diǎn),轉(zhuǎn)化為等腰三角形.
思路3:過(guò)同一底邊上的頂點(diǎn)作另一條底邊的垂線,轉(zhuǎn)化為直角三角形和矩形.
請(qǐng)你結(jié)合以上思路,用適當(dāng)?shù)姆椒ㄗC明該命題.

證明:過(guò)點(diǎn)D作DE∥AB,交BC于E,
∵DE∥AB,
∴∠1=∠B,
∵∠B=∠C,
∴∠1=∠C,
∴DE=DC,
∵DE∥AB,AD∥BC,
∴四邊形ABED是平行四邊形,
∴AB=DE,
∴AB=CD.
分析:先過(guò)點(diǎn)D作DE∥AB,交BC于E,由于DE∥AB,可知∠1=∠B,而∠B=∠C,那么∠1=∠C,從而有DE=DC,又知DE∥AB,AD∥BC,可知四邊形ABED是平行四邊形,那么AB=DE,等量代換可得AB=CD.
點(diǎn)評(píng):本題考查了平行四邊形的判定和性質(zhì)、等角對(duì)等邊,解題的關(guān)鍵是作輔助線DE,構(gòu)造平行四邊形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、學(xué)生在討論命題:“如圖,梯形ABCD中,AD∥BC,∠B=∠C,則AB=DC.”的證明方法時(shí),提出了如下三種思路.
思路1:過(guò)一個(gè)頂點(diǎn)作另一腰的平行線,轉(zhuǎn)化為等腰三角形和平行四邊形;
思路2:過(guò)同一底邊上的頂點(diǎn)作另一條底邊的垂線,轉(zhuǎn)化為直角三角形和矩形;
思路3:延長(zhǎng)兩腰相交于一點(diǎn),轉(zhuǎn)化為等腰三角形.
請(qǐng)你結(jié)合以上思路,用適當(dāng)?shù)姆椒ㄗC明該命題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

學(xué)生在討論命題:“如圖,梯形ABCD中,AD∥BC,∠B=∠C,則AB=DC.”的證明方法時(shí),提出了如下三種思路.
思路1:過(guò)一個(gè)頂點(diǎn)作另一腰的平行線,轉(zhuǎn)化為等腰三角形和平行四邊形
思路2:延長(zhǎng)兩腰相交于一點(diǎn),轉(zhuǎn)化為等腰三角形.
思路3:過(guò)同一底邊上的頂點(diǎn)作另一條底邊的垂線,轉(zhuǎn)化為直角三角形和矩形.
請(qǐng)你結(jié)合以上思路,用適當(dāng)?shù)姆椒ㄗC明該命題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:邵陽(yáng) 題型:解答題

學(xué)生在討論命題:“如圖,梯形ABCD中,ADBC,∠B=∠C,則AB=DC.”的證明方法時(shí),提出
精英家教網(wǎng)
了如下三種思路.
思路1:過(guò)一個(gè)頂點(diǎn)作另一腰的平行線,轉(zhuǎn)化為等腰三角形和平行四邊形;
思路2:過(guò)同一底邊上的頂點(diǎn)作另一條底邊的垂線,轉(zhuǎn)化為直角三角形和矩形;
思路3:延長(zhǎng)兩腰相交于一點(diǎn),轉(zhuǎn)化為等腰三角形.
請(qǐng)你結(jié)合以上思路,用適當(dāng)?shù)姆椒ㄗC明該命題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

學(xué)生在討論命題:“如圖,梯形中,,,則.”的

證明方法時(shí),提出了如下三種思路.

思路1:過(guò)一個(gè)頂點(diǎn)作另一腰的平行線,轉(zhuǎn)化為等腰三角形和平行四邊形

思路2:延長(zhǎng)兩腰相交于一點(diǎn),轉(zhuǎn)化為等腰三角形.

思路3:過(guò)同一底邊上的頂點(diǎn)作另一條底邊的垂線,轉(zhuǎn)化為直角三角形和矩形

請(qǐng)你結(jié)合以上思路,用適當(dāng)?shù)姆椒ㄗC明該命題.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷21(金山學(xué)校 來(lái)小權(quán))(解析版) 題型:解答題

(2008•邵陽(yáng))學(xué)生在討論命題:“如圖,梯形ABCD中,AD∥BC,∠B=∠C,則AB=DC.”的證明方法時(shí),提出了如下三種思路.
思路1:過(guò)一個(gè)頂點(diǎn)作另一腰的平行線,轉(zhuǎn)化為等腰三角形和平行四邊形;
思路2:過(guò)同一底邊上的頂點(diǎn)作另一條底邊的垂線,轉(zhuǎn)化為直角三角形和矩形;
思路3:延長(zhǎng)兩腰相交于一點(diǎn),轉(zhuǎn)化為等腰三角形.
請(qǐng)你結(jié)合以上思路,用適當(dāng)?shù)姆椒ㄗC明該命題.

查看答案和解析>>

同步練習(xí)冊(cè)答案