【題目】在平面直角坐標(biāo)系中,我們定義直線為拋物線b、c為常數(shù),夢想直線;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其夢想三角形”.

已知拋物線與其夢想直線交于A、B兩點(diǎn)點(diǎn)A在點(diǎn)B的左側(cè),與x軸負(fù)半軸交于點(diǎn)C

填空:該拋物線的夢想直線的解析式為______,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;

如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將AM所在直線為對稱軸翻折,點(diǎn)C的對稱點(diǎn)為N,若為該拋物線的夢想三角形,求點(diǎn)N的坐標(biāo);

當(dāng)點(diǎn)E在拋物線的對稱軸上運(yùn)動(dòng)時(shí),在該拋物線的夢想直線上,是否存在點(diǎn)F,使得以點(diǎn)A、CE、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請說明理由.

【答案】(1);;;(2)N點(diǎn)坐標(biāo)為;(3)、、

【解析】試題分析:(1)由夢想直線的定義可求得其解析式,聯(lián)立夢想直線與拋物線解析式可求得AB的坐標(biāo);

(2)當(dāng)N點(diǎn)在y軸上時(shí),過AADy軸于點(diǎn)D,則可知AN=AC,結(jié)合A點(diǎn)坐標(biāo),則可求得ON的長,可求得N點(diǎn)坐標(biāo);當(dāng)M點(diǎn)在y軸上即M點(diǎn)在原點(diǎn)時(shí),過NNPx軸于點(diǎn)P,由條件可求得NMP=60°,在Rt△NMP中,可求得MPNP的長,則可求得N點(diǎn)坐標(biāo);

(3)當(dāng)AC為平行四邊形的一邊時(shí),過F作對稱軸的垂線FH,過AAKx軸于點(diǎn)K,可證EFH≌△ACK,可求得DF的長,則可求得F點(diǎn)的橫坐標(biāo),從而可求得F點(diǎn)坐標(biāo),由HE的長可求得E點(diǎn)坐標(biāo);當(dāng)AC為平行四邊形的對角線時(shí),設(shè)E(﹣1,t),由AC的坐標(biāo)可表示出AC中點(diǎn),從而可表示出F點(diǎn)的坐標(biāo),代入直線AB的解析式可求得t的值,可求得E、F的坐標(biāo).

(1)∵拋物線,∴其夢想直線的解析式為,聯(lián)立夢想直線與拋物線解析式可得,解得,∴A(﹣2,),B(1,0),故答案為:;(﹣2,);(1,0);

(2)當(dāng)點(diǎn)Ny軸上時(shí),AMN為夢想三角形,如圖1,過AADy軸于點(diǎn)D,則AD=2,中,令y=0可求得x=﹣3x=1,∴C(﹣3,0),且A(﹣2,),∴AC= =,由翻折的性質(zhì)可知AN=AC=,在Rt△AND中,由勾股定理可得DN= = =3,∵OD=,∴ON=﹣3ON=+3,當(dāng)ON=+3時(shí),則MNODCM,與MN=CM矛盾,不合題意,N點(diǎn)坐標(biāo)為(0,﹣3);

當(dāng)M點(diǎn)在y軸上時(shí),則MO重合,過NNPx軸于點(diǎn)P,如圖2,在Rt△AMD中,AD=2,OD=,∴tan∠DAM==,∴∠DAM=60°,∵ADx軸,∴∠AMC=∠DAO=60°,又由折疊可知NMA=∠AMC=60°,∴∠NMP=60°,且MN=CM=3,∴MP=MN=,NP=MN=,∴此時(shí)N點(diǎn)坐標(biāo)為(,);

綜上可知N點(diǎn)坐標(biāo)為(0,﹣3)或(,);

(3)①當(dāng)AC為平行四邊形的邊時(shí),如圖3,過F作對稱軸的垂線FH,過AAKx軸于點(diǎn)K,則有ACEFAC=EF,∴∠ACK=∠EFH,在ACKEFH,∵∠ACK=∠EFH,∠AKC=∠EHFAC=EF,∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=,∵拋物線對稱軸為x=﹣1,∴F點(diǎn)的橫坐標(biāo)為0或﹣2,∵點(diǎn)F在直線AB上,當(dāng)F點(diǎn)橫坐標(biāo)為0時(shí),則F(0,),此時(shí)點(diǎn)E在直線AB下方,Ey軸的距離為EHOF==,即E點(diǎn)縱坐標(biāo)為﹣,∴E(﹣1,﹣);

當(dāng)F點(diǎn)的橫坐標(biāo)為﹣2時(shí),則FA重合,不合題意,舍去;

當(dāng)AC為平行四邊形的對角線時(shí),C(﹣3,0),且A(﹣2,),∴線段AC的中點(diǎn)坐標(biāo)為(﹣2.5,),設(shè)E(﹣1,t),Fxy),則x﹣1=2×(﹣2.5),y+t=,∴x=﹣4,y=t,代入直線AB解析式可得t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,);

綜上可知存在滿足條件的點(diǎn)F,此時(shí)E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準(zhǔn)備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低,若該果園每棵果樹產(chǎn)果y千克,增種果樹x棵,它們之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)解析式;

(2)在投入成本最低的情況下,增種果樹多少棵時(shí),果園可以收獲果實(shí)6750千克?

(3)當(dāng)增種果樹多少棵時(shí),果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,點(diǎn)FAC延長線上,DE△ABC中位線,如果∠1=30°DE=2,則四邊形AFED的周長是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的對角線的交點(diǎn),過點(diǎn)作直線分別交于點(diǎn),.

1)求證:.

2)若,,,求四邊形的周長.

3)若,直接寫出的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為10的菱形ABCD中,對角線BD16,對角線ACBD相交于點(diǎn)G,點(diǎn)O是直線BD上的動(dòng)點(diǎn),OEABE,OFADF.

(1)求對角線AC的長及菱形ABCD的面積.

(2)如圖①,當(dāng)點(diǎn)O在對角線BD上運(yùn)動(dòng)時(shí),OEOF的值是否發(fā)生變化?請說明理由.

(3)如圖②,當(dāng)點(diǎn)O在對角線BD的延長線上時(shí),OEOF的值是否發(fā)生變化?若不變,請說明理由;若變化,請?zhí)骄?/span>OE,OF之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AC=BC,點(diǎn)OAB上,經(jīng)過點(diǎn)A的⊙OBC相切于點(diǎn)D,交AB于點(diǎn)E

1)求證:AD平分∠BAC;

2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1個(gè)單位長度.△ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)上,且通過兩次平移(沿網(wǎng)格線方向作上下或左右平移)后得到△A′B′C′,點(diǎn)C的對應(yīng)點(diǎn)是直線上的格點(diǎn)C′.

(1)畫出△A′B′C′.

(2)△ABC兩次共平移了___個(gè)單位長度。

(3)試在直線上畫出點(diǎn)P,使得由點(diǎn)A′、B′、C′、P四點(diǎn)圍成的四邊形的面積為9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCAB、AC為邊分別作正方形ADEBACGF,連接DCBF:

(1)CDBF相等嗎?請說明理由;

(2)CDBF互相垂直嗎?請說明理由;

(3)利用旋轉(zhuǎn)的觀點(diǎn),在此題中,ADC可看成由哪個(gè)三角形繞哪點(diǎn)旋轉(zhuǎn)多少角度得到的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙C過原點(diǎn)O,且與兩坐標(biāo)軸分別交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(0,2),M是第三象限內(nèi)⊙C上一點(diǎn),∠BMO=120°,則圓心C的坐標(biāo)為( 。

A. 1,1 B. 1 C. 2,1 D. ,1

查看答案和解析>>

同步練習(xí)冊答案