【題目】已知二次函數(shù)y=ax+bx-4(a,b是常數(shù).且a0)的圖象過點(diǎn)(3,-1).
(1)試判斷點(diǎn)(2,2-2a)是否也在該函數(shù)的圖象上,并說明理由.
(2)若該二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),求該函數(shù)表達(dá)式.
(3)已知二次函數(shù)的圖像過(,)和(,)兩點(diǎn),且當(dāng)<時(shí),始終都有>,求a的取值范圍.
【答案】(1)不在;(2);;(3)
【解析】
(1)將點(diǎn)代入函數(shù)解析式,求出a和b的等式,將函數(shù)解析式改寫成只含有a的形式,再將點(diǎn)代入驗(yàn)證即可;
(2)令,得到一個(gè)一元二次方程,由題意此方程只有一個(gè)實(shí)數(shù)根,由根的判別式即可求出a的值,從而可得函數(shù)表達(dá)式;
(3)根據(jù)函數(shù)解析式求出其對稱軸,再根據(jù)函數(shù)圖象的增減性判斷即可.
(1)二次函數(shù)圖像過點(diǎn)
代入得,
,代入得
將代入得,得,不成立,所以點(diǎn)不在該函數(shù)圖像上;
(2)由(1)知,
與x軸只有一個(gè)交點(diǎn)
只有一個(gè)實(shí)數(shù)根
,或
當(dāng)時(shí),,所以表達(dá)式為:
當(dāng)時(shí),,所以表達(dá)式為:;
(3)
對稱軸為
當(dāng)時(shí),函數(shù)圖象如下:
若要滿足時(shí),恒大于,則、均在對稱軸左側(cè)
,
當(dāng)時(shí),函數(shù)圖象如下:
,此時(shí),必小于
綜上,所求的a的取值范圍是:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為1cm,弦AB、CD的長度分別為cm,1cm.
(1)求圓心O到弦AB的距離;
(2)弦AC、BD所夾的銳角α的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,雙曲線y=(k≠0)與直線y=ax+b(a≠0)交于A,B兩點(diǎn),直線AB分別交x軸,y軸于C、D兩點(diǎn),若OA=OC,A點(diǎn)坐標(biāo)為(4,3).
(1)分別求出雙曲線與直線的函數(shù)表達(dá)式;
(2)若P為雙曲線上一點(diǎn),且橫坐標(biāo)為2,H為直線AB上一點(diǎn),且PH+HC最小,延長PH交x軸于點(diǎn)E,將線段OE沿x軸平移得線段O'E',在平移過程中,是否存在某個(gè)位置使|BO'﹣AE'|的值最大值,求出最大值并求出此時(shí)E點(diǎn)坐標(biāo).
(3)在(2)的情況下,將直線OA沿線段CE平移,平移過程中交y=(x>0)的圖象于M(M與點(diǎn)A不重合)交x軸于點(diǎn)N,在平面內(nèi)找一點(diǎn)G,使M、N,E,G為頂點(diǎn)的四邊形為矩形?直接寫出G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有A、B兩個(gè)不透明袋子,分別裝有3個(gè)除顏色外完全相同的小球。其中,A袋裝有2個(gè)白球,1個(gè)紅球;B袋裝有2個(gè)紅球,1個(gè)白球。
(1)將A袋搖勻,然后從A袋中隨機(jī)取出一個(gè)小球,求摸出小球是白色的概率;
(2)小華和小林商定了一個(gè)游戲規(guī)則:從搖勻后的A,B兩袋中隨機(jī)摸出一個(gè)小球,摸出的這兩個(gè)小球,若顏色相同,則小林獲勝;若顏色不同,則小華獲勝。請用列表法或畫出樹狀圖的方法說明這個(gè)游戲規(guī)則對雙方是否公平。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】岳陽市整治農(nóng)村“空心房”新模式,獲評全國改革開放40年地方改革創(chuàng)新40案例.據(jù)了解,我市某地區(qū)對轄區(qū)內(nèi)“空心房”進(jìn)行整治,騰退土地1200公頃用于復(fù)耕和改造,其中復(fù)耕土地面積比改造土地面積多600公頃.
(1)求復(fù)耕土地和改造土地面積各為多少公頃;
(2)該地區(qū)對需改造的土地進(jìn)行合理規(guī)劃,因地制宜建設(shè)若干花卉園和休閑小廣場,要求休閑小廣場總面積不超過花卉園總面積的,求休閑小廣場的總面積最多為多少公頃.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
求出每天的銷售利潤元與銷售單價(jià)元之間的函數(shù)關(guān)系式;
求出銷售單價(jià)為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?
如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的頂點(diǎn)分別在軸和軸上,與雙曲線恰好交于的中點(diǎn). 若,則的值為( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC中,∠ABC=90°,點(diǎn)D在AC上,將△ABD繞頂點(diǎn)B沿順時(shí)針方向旋轉(zhuǎn)90°后得到△CBE.
(1)求∠DCE的度數(shù);
(2)當(dāng)AB=4,AD∶DC=1∶3時(shí),求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com