【題目】如圖,點(diǎn)E在BC的延長(zhǎng)線上,則下列條件中,不能判定AB∥CD的是(
A.∠D+∠DAB=180°
B.∠B=∠DCE
C.∠1=∠2.
D.∠3=∠4

【答案】D
【解析】解:A、∵∠D+∠DAB=180°, ∴AB∥CD,本選項(xiàng)不合題意;
B、∵∠B=∠DCE,
∴AB∥CD,本選項(xiàng)不合題意;
C、∵∠1=∠2,
∴AB∥CD,本選項(xiàng)不合題意;
D、∵∠3=∠4,
∴AD∥BC,本選項(xiàng)符合題意.
故選D.
A、利用同旁?xún)?nèi)角互補(bǔ)兩直線平行,得到AB與CD平行,本選項(xiàng)不合題意;
B、利用同位角相等兩直線平行,得到AB與CD平行,本選項(xiàng)不合題意;
C、利用內(nèi)錯(cuò)角相等兩直線平行,得到AB與CD平行,本選項(xiàng)不合題意;
D、利用內(nèi)錯(cuò)角相等兩直線平行,得到AD與BC平行,本選項(xiàng)符合題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)連接在一起的菱形的邊長(zhǎng)都是1cm,一只電子甲蟲(chóng)從點(diǎn)A開(kāi)始按ABCDAEFGAB…的順序沿菱形的邊循環(huán)爬行,當(dāng)電子甲蟲(chóng)爬行2014cm時(shí)停下,則它停的位置是(   )

A. 點(diǎn)F B. 點(diǎn)E C. 點(diǎn)A D. 點(diǎn)C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)衢州市統(tǒng)計(jì)局發(fā)布的統(tǒng)計(jì)數(shù)據(jù)顯示,衢州市近5年國(guó)民生產(chǎn)總值數(shù)據(jù)如圖1所示,2016年國(guó)民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示。


請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)求2016年第一產(chǎn)業(yè)生產(chǎn)總值(精確到1億元);
(2)2016年比2015年的國(guó)民生產(chǎn)總值增加了百分之幾(精確到1%)?
(3)若要使2018年的國(guó)民生產(chǎn)總值達(dá)到1573億元,求2016年至2018年我市國(guó)民生產(chǎn)總值平均年增長(zhǎng)率(精確到1%)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小梅用兩張同樣大小的長(zhǎng)方形硬紙片拼接成一個(gè)面積為900cm2的正方形,如圖所示,按要求完成下列各小題.

(1)求長(zhǎng)方形硬紙片的寬;

(2)小梅想用該長(zhǎng)方形硬紙片制作一個(gè)體積512cm3的正方體的無(wú)蓋筆筒,請(qǐng)你判斷該硬紙片是否夠用?若夠用,求剩余的硬紙片的面積;若不夠用,求缺少的硬紙片的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=Rt∠,以BC為直徑的⊙O交AB于點(diǎn)D,切線DE交AC于點(diǎn)E.

(1)求證:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將周長(zhǎng)為8的△ABC沿BC方向向右平移1個(gè)單位得到△DEF,則四邊形ABFD的周長(zhǎng)為(
A.11
B.10
C.9
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知EF⊥AB,垂足為F,CD⊥AB,垂足為D,∠1=∠2,試判斷∠AGD和∠ACB是否相等,為什么?(將解答過(guò)程補(bǔ)充完整) 解:∠AGD=∠ACB.理由如下:
∵EF⊥AB,CD⊥AB(已知)
∴∠EFB=∠CDB=90° (
(同位角相等,兩直線平行)
∴∠1=∠ECD(
又∵∠1=∠2(已知)
∴∠ECD=( 等量代換)
∴GD∥CB(
∴∠AGD=∠ACB ().

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在ABC中,D是BC邊上一點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交CE的延長(zhǎng)線于F,且AF=BD,連接BF.

(1)求證:點(diǎn)D是線段BC的中點(diǎn);

(2)如圖2,若AB=AC=13,AF=BD=5,求四邊形AFBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)興趣小組測(cè)量校園內(nèi)旗桿的高度,有以下兩種方案:

方案一:小明在地面上直立一根標(biāo)桿,沿著直線后退到點(diǎn),使眼睛、標(biāo)桿的頂點(diǎn)、旗桿的頂點(diǎn)在同一直線上(如圖1).測(cè)量:人與標(biāo)桿的距離=1 m,人與旗桿的距離=16m,人的目高和標(biāo)桿的高度差=0.9m,人的高度=1.6m.

方案二:小聰在某一時(shí)刻測(cè)得1米長(zhǎng)的竹竿豎直放置時(shí)影長(zhǎng)1.5米,在同時(shí)刻測(cè)量旗桿的影長(zhǎng)時(shí),因旗桿靠近一樓房,影子不全落在地面上,有一部分落在墻上,他測(cè)得落在地面上影長(zhǎng)為21米,留在墻上的影高為2(如圖2).

請(qǐng)你結(jié)合上述兩個(gè)方案,選擇其中的一個(gè)方案求旗桿的高度。我選擇方案 .

查看答案和解析>>

同步練習(xí)冊(cè)答案