【題目】如圖,拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,且當(dāng)x=﹣1和x=3時(shí),y值相等.直線y=與拋物線有兩個(gè)交點(diǎn),其中一個(gè)交點(diǎn)的橫坐標(biāo)是6,另一個(gè)交點(diǎn)是這條拋物線的頂點(diǎn)M.
(1)求這條拋物線的表達(dá)式.
(2)動(dòng)點(diǎn)P從原點(diǎn)O出發(fā),在線段OB上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),在線段BC上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)立即停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①求t的取值范圍.
②若使△BPQ為直角三角形,請(qǐng)求出符合條件的t值;
③t為何值時(shí),四邊形ACQP的面積有最小值,最小值是多少?直接寫出答案.
【答案】(1);(2)①,②t的值為或,③當(dāng)t=2時(shí),四邊形ACQP的面積有最小值,最小值是.
【解析】
(1)求出對(duì)稱軸,再求出y=與拋物線的兩個(gè)交點(diǎn)坐標(biāo),將其代入拋物線的頂點(diǎn)式即可;
(2)①先求出A、B、C的坐標(biāo),寫出OB、OC的長(zhǎng)度,再求出BC的長(zhǎng)度,由運(yùn)動(dòng)速度即可求出t的取值范圍;
②當(dāng)△BPQ為直角三角形時(shí),只存在∠BPQ=90°或∠PQB=90°兩種情況,分別證△BPQ∽△BOC和△BPQ∽△BCO,即可求出t的值;
③如圖,過(guò)點(diǎn)Q作QH⊥x軸于點(diǎn)H,證△BHQ∽△BOC,求出HQ的長(zhǎng),由公式S四邊形ACQP=S△ABC-S△BPQ可求出含t的四邊形ACQP的面積,通過(guò)二次函數(shù)的圖象及性質(zhì)可寫出結(jié)論.
解:(1)∵在拋物線中,當(dāng)x=﹣1和x=3時(shí),y值相等,
∴對(duì)稱軸為x=1,
∵y=與拋物線有兩個(gè)交點(diǎn),其中一個(gè)交點(diǎn)的橫坐標(biāo)是6,另一個(gè)交點(diǎn)是這條拋物線的頂點(diǎn)M,
∴頂點(diǎn)M(1,),另一交點(diǎn)為(6,6),
∴可設(shè)拋物線的解析式為y=a(x﹣1)2,
將點(diǎn)(6,6)代入y=a(x﹣1)2,
得6=a(6﹣1)2,
∴a=,
∴拋物線的解析式為
(2)①在中,當(dāng)y=0時(shí),x1=﹣2,x2=4;當(dāng)x=0時(shí),y=﹣3,
∴A(﹣2,0),B(4,0),C(0,﹣3),
∴在Rt△OCB中,OB=4,OC=3,
∴BC==5,
∴,
∵<4,
∴
②當(dāng)△BPQ為直角三角形時(shí),只存在∠BPQ=90°或∠PQB=90°兩種情況,
當(dāng)∠BPQ=90°時(shí),∠BPQ=∠BOC=90°,
∴PQ∥OC,
∴△BPQ∽△BOC,
∴,即,
∴t=;
當(dāng)∠PQB=90°時(shí),∠PQB=∠BOC=90°,∠PBQ=∠CBO,
∴△BPQ∽△BCO,
∴,即,
∴t=,
綜上所述,t的值為或;
③如右圖,過(guò)點(diǎn)Q作QH⊥x軸于點(diǎn)H,
則∠BHQ=∠BOC=90°,
∴HQ∥OC,
∴△BHQ∽△BOC,
∴,即,
∴HQ=,
∴S四邊形ACQP=S△ABC﹣S△BPQ
=×6×3﹣(4﹣t)×t
=(t﹣2)2+,
∵>0,
∴當(dāng)t=2時(shí),四邊形ACQP的面積有最小值,最小值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線AB經(jīng)過(guò)⊙O上的點(diǎn)C,并且OA=OB,CA=CB,
(1)求證:直線AB是⊙O的切線;
(2)OA,OB分別交⊙O于點(diǎn)D,E,AO的延長(zhǎng)線交⊙O于點(diǎn)F,若AB=4AD,求sin∠CFE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:(﹣)﹣2﹣6sin30°﹣(π﹣3.14)0﹣|﹣1|
(2)解不等式組:,并求出所有整數(shù)解之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
如圖1.在△ABC中,∠A、∠B、∠C所對(duì)的邊分別為a、b、c,可以得到:
證明:過(guò)點(diǎn)A作AD⊥BC,垂足為D.
在Rt△ABD中,
∴
∴
同理:
∴
(1)通過(guò)上述材料證明:
(2)運(yùn)用(1)中的結(jié)論解決問(wèn)題:
如圖2,在中,,求AC的長(zhǎng)度.
(3)如圖3,為了開(kāi)發(fā)公路旁的城市荒地,測(cè)量人員選擇A、B、C三個(gè)測(cè)量點(diǎn),在B點(diǎn)測(cè)得A在北偏東75°方向上,沿筆直公路向正東方向行駛18km到達(dá)C點(diǎn),測(cè)得A在北偏西45°方向上,根據(jù)以上信息,求A、B、C三點(diǎn)圍成的三角形的面積.
(本題參考數(shù)值:sin15°≈0.3,sin120°≈0.9,≈1.4,結(jié)果取整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了豐富校園文化生活,提高學(xué)生的綜合素質(zhì),促進(jìn)中學(xué)生全面發(fā)展,學(xué)校開(kāi)展了多種社團(tuán)活動(dòng).小明喜歡的社團(tuán)有:合唱社團(tuán)、足球社團(tuán)、書(shū)法社團(tuán)、科技社團(tuán)(分別用字母A,B,C,D依次表示這四個(gè)社團(tuán)),并把這四個(gè)字母分別寫在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗勻后放在桌面上.
(1)小明從中隨機(jī)抽取一張卡片是足球社團(tuán)B的概率是 .
(2)小明先從中隨機(jī)抽取一張卡片,記錄下卡片上的字母后不放回,再?gòu)氖S嗟目ㄆ须S機(jī)抽取一張卡片,記錄下卡片上的字母.請(qǐng)你用列表法或畫(huà)樹(shù)狀圖法求出小明兩次抽取的卡片中有一張是科技社團(tuán)D的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知如圖1,在中,,,點(diǎn)在內(nèi)部,點(diǎn)在外部,滿足,且.求證:.
(2)已知如圖2,在等邊內(nèi)有一點(diǎn),滿足,,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=3,BC=5,對(duì)角線AC⊥AB.點(diǎn)P從點(diǎn)D出發(fā),沿折線DC﹣CB以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng)(不與點(diǎn)B、D重合),過(guò)點(diǎn)P作PE⊥AB,交射線BA于點(diǎn)E,連結(jié)BP.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),△BPE的面積為S(平方單位).
(1)AD與BC間的距離是 .
(2)當(dāng)點(diǎn)P在BC上時(shí),求PE的長(zhǎng)(用含t的代數(shù)式表示).
(3)求S與t之間的函數(shù)關(guān)系式.
(4)直接寫出PE將平行四邊形ABCD的面積分成1:7兩部分時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC為⊙O的直徑,過(guò)點(diǎn)C作AC的垂線交AD的延長(zhǎng)線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DC,DF.
(1)求∠CDE的度數(shù);
(2)求證:DF是⊙O的切線;
(3)若AC=2DE,求tan∠ABD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把邊長(zhǎng)為1的正方形ABCD繞頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°到正方形AB′C′D′,則它們的公共部分的面積等于_____.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923101670465536/1923902127538176/STEM/3534c7f6f1a5489684ae6308493b71da.png]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com